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PREFACE 

This volume contains selected papers presented at the Symposium on "Recent 
Developments in Non-linear Oscillations of Mechanical Systems", held in Hanoi, 
Vietnam, from 2 - 5 March 1999. This Symposium was initiated and sponsored by the 
International Union of Theoretical and Applied Mechanics (lUI AM) and organised in 
conjunction with Vietnam National University, Hanoi. Ihe purpose of the Symposium 
was to bring together scientists active in different fields of oscillations with the aim to 
review the recent progress in theory of oscillations and engineering applications and 
to outline the prospects in its further achievements to then co-ordinate and direct 
research in this field to further co-operation between scientists and various scientific 
institutions. 

An International Scientific Committee was appointed by the Bureau of IUI AM with 
the following members: 

Nguyen Van Dao (Vietnam, Co-Chairman) 
E.J. Kreuzer (Germany, Co-Chairman) 
D.H. van Campen (The Netherlands) 
F.L. Chernousko (Russia) 
A.H. Nayfeh (U.S.A) 
Nguyen Xuan Hung (Vietnam) 
W.O. Schiehlen (Germany) 
J.M.T. Thompson (U.K) 
Y. Veda (Japan). 

This Committee selected the participants to be invited and the papers to be presented 
at the Symposium. As a result of this procedure, 52 active scientists from 16 countries 
responded to the invitation, and 42 papers were presented in lecture and poster 
discussion sessions. 

The scientific presentations were devoted to the following topics: 

1. Non-linear Oscillations of beams, plates, vehicles and other dynamic systems; 
2. Analysis and Control of Non-linear Systems; 
3. Non-linear waves; 
4. Dynamics of Offshore structures; 
5. System Identification; 
6. Mathematical and Numerical methods for investigating non-linear systems. 

The papers of this volume are arranged in alphabetical order with respect to the family 
name of the first author. 

The presentations and discussions, including the round table discussion, during the 
Symposium will certainly stimulate further theoretical and applied investigations in 
non-linear oscillations. The publication of the proceedings will promote this 
development. 

The success of the Symposium would not have been possible without the excellent 
work of the Local Organising Committee. Members of that Committee were Do Sanh 

ix 
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(Chairman), Phan Nguyen Di, Nguyen Van Khang, Tran Quang Khoi, Nguyen Gao 
Menh, Dinh Van Phong, Nguyen Thi Trung and Vu Ngoc Tu. The secretarial work for 
both the Conference and this volume has been admirably undertaken by Mrs. Nguyen 
Thi Hong Hanh. 

We are sincerely grateful to Prof. Werner Schiehlen, President of IUTAM for his 
encouragement to the success of this IUTAM Symposium and to Vietnam National 
University, Hanoi, the host of this significant scientific event. 

The editors wish to thank the participants of this IUT AM Symposium, especially the 
authors of the papers, and all organisers for their enthusiastic and valuable 
contributions to the Symposium. 

Sincere thanks are also due to Prof. Graham Gladwell, and Kluwer Academic 
Publishers for their help and co-operation. 

We gratefully acknowledge financial support from IUTAM and the Vietnam Council 
for Natural Science. 

Nguyen Van Dao E.J. Kreuzer 
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STABILITY IMPROVEMENT OF THE IMPACT DYNAMICAL 

SYSTEMS - ANALYTICAL AND NUMERICAL METHODS 

1. A WREJCEWICZ and K. TOMCZAK 
Division of Automatics and Biomechanics 
Technical University ofL6dz 
1/15 Stefanowskiego St., 90-924 L6dz, POLAND 

1. Introduction 

Vibro-impact vibration problems with one-degree-of-freedom systems 
have a long history in mechanics. The problems like stationary 
subharmonic motions and their stability, the influence of damping and 
friction on vibro-impact dynamics, elastic and plastic type impacts, time 
histories and phase portraits of the vibro-impact systems have been 
considered [1-7]. 

In this work we propose an analytical approach to determine suitable 
delay loop coefficients to realise the required vibro-impact periodic 
dynamics for a non-resonance case. The obtained analytical formulas 
allow for a proper choice of the delay loop coefficients in order to achieve 
the required vibro-impact periodic motion quicker then in the case 
without a loop. When the vibro-impact periodic motion is achieved the 
delay loop is automatically switched off 

2. The analysed system 

A feedback control with the delay loop is used in order to improve a 
stability of a vibro-impact periodic motion. It possesses the following 
properties: 

simple construction (a feedback loop with delay elements); 
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simple mathematical description; 

the only one information required about an object being analysed is 
a period of oscillations (besides, an object can be treated as a 
"black box"). 

The analysed system with the kinematic excitation is presented in 
Figure 1. The system dynamics (including a delay loop) is governed by the 
equation: 

i +ci + a 2 x = Po cosevt + s[x(t) - x(t - T)] + Q[x(t) - x(t - T)] for x <s, (1) 

for x = s, 

where: c=c1/m, a 2 =(kl +k2)/m, Po = k2YO/m , S=k2P/m, Q=k2q/m and 

T = 27lk/ ev is the period of a stabilised periodic orbit, R denotes the 

restitution coefficient, and s is the constraint. The natural number k 
defines the number of excitation periods occurring during one impact. The 
indeces "+" and "-" define positions and velocities of the body just after 
and before an impact, correspondingly. 

yocos( (j)t+tp) 

(a) 

(b) 

Y. = p[ x{t) - x{t - T)] + 

+ q[ x{t) - x{t - T)] 

Fig. 1 - One-degree-of-freedom vibro-impact system kinematically excited 
(a) and the control diagram (b). 



www.manaraa.com

3 

It is assumed (Figure 1) that the stabilised periodic orbit 
xo(t) =xo(/-T) has the period of the excitation the same as in the system 

without that loop and that Xo (I) is the particular solution for the system 

with and without the delay loop [8-10]. The delay loop starts to operate 
when the disturbances occur and is going to act on the dynamics in order 
to achieve the vibro-impact periodic motion quicker than in the case 
without a loop. 

3. Control far from the resonance 

In order to find the analytical solution to equation (1) the approximate 
analytical method has been applied assuming that: 

- the difference x(t) - x(t - T) is small; 

- the damping c is of the same order as the introduced formally 
perturbation parameter & . 

In order to find the complete solution of the equation (1) in the far 
from the resonance motion the Krylov-Bogoliubov-Mitropolskij method 
(KBM) was applied. 

A new variable "z" is introduced to the equation (1), defined as: 

Po x = Z -L 2 2 cos wt . 
a -w 

(2) 

We get: 

(3) 

where: 

if(a,17,lf/)=&S[z+ 2Po 2coswt-z(t-T)- 2PO 2COSW(t-T)]+ 
a -w a -w 

+lQ[(l- ;)(z- at~:2 sinmt) -z(t-T)+ at~:2 Sinw(t-T)} 

17 = wt, If/ = at. 

U sing the KBM method we have truncated the & series up to the order 
0(&) and we have obtained: 

z(t) = a(t)coslf/(t), (4) 
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where: 

da &Sa. & ( ) cQa - = - smaT + - Q - c a - - cos aT 
dt 2a 2 2 ' 

dlf/ = a _ &S + &S cos aT + cQ sinaT 
(5) 

dt 2a 2a 2 

For S = Q = 0 we get the uncontrolled solution, which testifies the 

validity of our approach. 
After integration of equations (5) one obtains: 

a(t) = CoeVt , If/(t) = aot + 00, 

v= 2~ {SsinaT-a[c-Q(I-cosaT)]}, (6) 

ao =a-~(I-cosaT)+ Q sinaT. 
2a 2 

Therefore, we analyse the following equivalent solution (for vibro-impact 
motion): 

for x = s, 

where: 

and the values of the parameters C, D and e are defined according to the 
formulas obtained for the system without a delay loop [6]. 

In order to investigate the stability we use the following approach [6]. 
If we perturb the periodic solution (12) with a small value &z, this 

perturbance will cause the change of the parameters C and D and the 
phase shift e with the value of t5C/, 8D/ and 80/, correspondingly. The 

perturbed solution will be then: 

x+tlx-/ = eVt[(c + t5C/)cosaot/ +(D+bD/)sinaot/]+acos(mt/ +0+80/), (8) 

where: a = Po/(a 2 _m 2 ). 
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In the above formula the time t is measured beginning from the I-th 
impact, and the change of the constants C and D were taken into account. 
The impact 1+ 1 will occur in the time moment 11+1 = 2td/ W + OIJ, where OIJ 
denotes the period change T. Taking into account the fact that t concerns 
also the unperturbed equation, then II = 1+ Otl , where 011 = ° for the I-th 

impact, and 011 = OIJ for the (/+ 1 )-th impact. 

After a few transformations we get: 

&1 = eVt[(£1 +aoDOtI +VCOtI)cosao! +(bDl - aoCOtI + VDOtI) SinAi] + 

- a(w&'1 + 881 )sin«())/ + 8). 
(9) 

Introducing the following boundary conditions for I-th and (/+ 1 )-th 
impact: 

/: (10) 

we receive six equations. 

I 

Since 8C{+1 = 880 + L,w8I;, we finally get the following three equations: 
;=0 

£1 -a8~ sin 8 = 0, 

e2f3V {£I cos2j3~ +bDl sin2j3~ + ~ (8~+1 -8~)[(~D+VC) cos2j3~ + 

(VD-~C)sin2j3~]}-£I+1 =0, 

ve2PV{(~bDl +V£I)cos2j31-(~£I-VbDl)sin2j31+ 

+ ~ (8£1+1 -8£1)[(2V~D+qV2 -a;?)) cos2j3~ + 

+( -2V~C+D(V2 -a;)) sin2j3~ ]}+V£I+I +~bDl+I -(R + 1)8~+lawcos8 = 0. 

The solutions are sought in the following form: 

£1 =a1yl, bDl =a2y l, 881 =a3y l, 

(11 ) 

(12) 

where ris a constant. After substituting (12) to (11) we get the following 
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characteristic equation: 

(13) 

where: 

bI = e2PV {aSinq(R -l)ao cos2,Bao +(R + l)V sin2,Ba ] - (R + 1)awcosOsin2,Bao + 

1 (14) 
+ w ao[(VC + aoD)(COS2/Jao -Re2/JV)+(vv+aoC)Sin2,Bao]} 

bo = Raoe4PV[~ (aoD+VC) - a Sino]. 

The problem of the investigation of this equation stability is reduced to 
the analysis of the roots of the second power equation (13). If these roots 
fulfil the following inequality: 

(15) 

then, in accordance with the expressions (12), the solutions liCz, 8Dz and 
80z approach zero at / --+ +00, and the solution will be called asymptotically 
stable. The above inequality is equivalent with the placement of the roots 
inside the unit circle of the complex plane. 

4. Simulation results 

The simulation model of a one-degree-of-freedom system and the control 
of the system is constructed with a use of the MA TLAB-Simulink 
package. 

The following system parameters were adopted for the simulation: 
m=2kg, c1=O.OlNs/m, k1=7N/m, k2 =lN/m, w/a=2.2, Yo=1.5m, 

R = 0.65, and s = O.OOlm . 

The analytical method presented in the previous section has been used 
to detect the delay loop coefficients. Figure 2 presents moduli of the roots 
of algebraic equation (13) versus the delay loop coefficients p and q (for 
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the considered parameters, the h,21 roots are complex conjugate 

numbers). The p and q parameters have been taken from the interval (-0.5, 
0.5). 

In order to check the analytical predictions, p. =Oand q=-O.4Nslm have 
been assumed and then the simulation results have been compared with 
the case whenp = q = O. 

For these parameters the delay loop control coefficients p and q allow 
us to obtain quicker damping of oscillations in the solution (7) than 
without control. Additionally, for the given parameters we have found 
from equation (13) that h2\ are lying closer to the origin for the system 

with the control coefficients than without control (with the delay loop 
\r ],21 = 0.539, whereas without the loop \r ],21 = 0.648). 

05 

.77189-0 -o.7718~ 

.74313-
.7718 

03 -o.7431~ 
.7431 

02 
.71438 

-o.7143~ 
.71 

01 
.68563 

-fl. 6856 

.6568Z 
--0.6568 c:r 

.62812- -0.6281 -<11 

-<12 
.59936 -0. 

-<13 .5700~ 0.5700 

-<14 5'I"1ffi .().541 

-<1~-7~~~~~--~~--~~--~~ 
-<15 -<14 -<13 -<12 -<11 0 01 02 03 04 05 

P 

Fig. 2 - The moduli of \r ],2\ versus the delay loop coefficients p and q. 

Figure 3 presents the simulation results in the form of phase planes and 
the transients of the difference x(t) - x(t - T). To compare these transients 

an additional /J. parameter has been adopted. That parameter defines the 
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time interval where the signal Ix(t) - x(t - T)I < Il. (during the simulation Il = 
10-3, has been used). 

It can be seen in Figure 3 that with control the transients vanish 
quicker than in the case without control. In the case presented above the 
periodic orbit is achieved after about 17.3 seconds for the system analysed 
without the delay loop and after 14.9 seconds for the system analysed 
with the delay loop (Il = 10-\ respectively. 

2 

0. 

·3 
X 10. 

x(t) - x(t-T) 

·1 f---+---+++-I'-'c-I'---------i 

·2 

(a) 

10. 15 20 25 

(b) 
X 10." 

2 x(t) - x(t-T) 

0. 

-11'-'1------------; 

·2 

10. 15 20 25 

0..8,----.------.------.--....---, 

0..6 

0..4 

0.2 

0. 

-0.2 

-0.4 

-0.6 

-0.4 -0.3 -0.2 -0.1 X 0. 

0..8,----.-----,..----.--...,....--, 

0..6 

0..4 

0.2 

0. 

-0.2 

-0.4 

-0.6 

-0.4 -0.3 -0.2 -0.1 x 0. 

Fig. 3 - Difference between two transients x(t)-x(t-1) and phase plane 
approaching periodic orbit for the system: (a) without control (p = 0, q = 

0) and (b) with control (p = 0, q = -0.4). 
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5. Conclusions 

In tbis paper we have presented an analytical approach to estimate the 
delay control coefficients for efficient stabilisation or destabilisation of the 
periodic orbit under consideration. Although the efficiency of the method 
is presented for k = 1 (periodic orbit with the same period as the 
excitation period) but our considerations are also valid for sub harmonics 
(for arbitrarily taken k > 1). The validity of our analytical approach has 
been testified by numerical simulations. 

To date, in the literature available to the authors, in order to acbieve 
the mentioned objective, the feedback loop coefficients have been adopted 
in a random way, using the numerical observation. In tbis paper tbis 
problem was solved analytically. 
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THEORETICAL AND EXPERIMENTAL EVIDENCE OF SYMMETRIC 
RESPONSE INSTABILITY IN THE FINITE, PLANAR DYNAMICS OF A 
CIRCULAR ARCH 

F. BENEDETTINI 
Dipartimento di Ingegneria delle Strutlure, Acque e Terreno, Universita' 
dell 'Aquila, Monteluco Roio, 67040 L 'Aquila, Italy 

1. Introduction 

The role of experimental tests as a necessary step in the analysis and the design of 
slender structures undergoing large displacements is assessed in this paper. In particular, 
the finite, forced dynamics of elastic structures having initial curvature show a series of 
interesting phenomena due to the presence of both symmetric and non symmetric 
nonlinearities. In the case of a circular arch excited by an harmonic vertical load applied 
on the tip and having the dynamics confined to the plane of initial configuration, the 
simple unimodal symmetric solution, stable for low excitation levels, loses stability 
around meaningful resonance conditions, and coupled symmetric anti-symmetric 
solutions appear. The nonlinear modal coupling is furthermore strengthened by possible 
internal resonance conditions depending on elasto-geometrical structural parameters 
and/or on the location of possibly applied concentrated masses. 
The problem already known for a long time (Bolotin [1]) has been recently revisited in 
the case of non shallow (Thomsen [2], Benedettini [3]) and shallow (Win-Min Tien et 
al. [4]) arches. In the cited papers, planar models of arches are analyzed with the 
objective of describing the overall dynamics and the bifurcation scenarios leading 
eventually to non regular motions occurring in some areas of the frequency-amplitude 
excitation parameter plane. Concerning the case of non shallow arches, the analytical 
model obtained by Thomsen [2], contains a mixed continuous-discrete formulation: the 
symmetric oscillations are, in fact, modeled as a discrete degree of freedom 
parametrically forcing the antisymmetric vibrations, modeled, on the contrary, with a 
correct continuum mechanics approach. In ref. [3], after revisiting the analytical results 
obtained in [2] and discussing a minor improvement proposed by Lakrad et al. [5], an 
analysis of the results obtained by using a first companion experimental model was 
done. In this work, after discussing the results obtained with systematic tests on a new 
experimental model, a new planar analytical model obtained with a monodimensional 
nonlinear elastic approach is considered (Sheinman [6], Alwar and Narasimhan [7]). To 
realize an arch having an actually planar dynamics, a cross section of the arch having an 
out of plane moment of inertia well above the planar one, has been considered (out of 
plane frequencies well above the planar ones). Within the aforementioned hypothesis 
and owing the assumption of non-shallow arch, the dynamic deformation is practically 

11 
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inextensional and free of shear effects. Coherently the new analytical model taking into 
account the nonlinear change in curvature, the tangential inertia forces and disregarding 
axial (Nayfeh and Raouf [8,9]) and shear deformations is derived by using the extended 
Hamilton's principle. The pde 's of the motion are then discretized by using a two-mode 
Galerkin approximation validated by experimental tests. The Karhunen-Loeve 
decomposition [10] was applied on experimental time-series contemporaneously 
acquired on eight different positions on the arch. During both periodic and non-periodic 
evolutions, the spatial shape of the system remains close to the eigenfunctions of the 
first two, symmetric and anti-symmetric modes, justifying in such a way the strong 
reduction adopted in the Galerkin discretization. The analytical model obtained with the 
preceding assumptions appears therefore correct to describe both the regular and non­
regular dynamics of the arch. The experimental and analytical models were analyzed 
around the primary external resonance condition of the symmetric mode in the case of a 
nearly 2: I internal resonance condition between the directly excited and the anti­
symmetric mode. The nonlinear modal coupling produces an instability of the simple 
symmetric solution and the extension and the nature of this instability zone are analyzed 
in detail for the given detuning. When the unimodal solution loses stability, two-mode 
periodic, quasi-periodic and chaotic motions have been observed. Each solution belongs 
to a sub-region of the main instability region: furthermore, entering the region from its 
boundary the complexity of the motion increases. The extention and shape of such sub­
areas depending on the internal detuning have been observed and sample time histories 
representative of the class of responses have been analyzed. Classical global complexity 
indicators like the maximum Lyapunov exponent and the correlation dimension have 
been used to quantify the chaoticity of the system and the possible fractal nature of 
underlying attractors. In the case of experimental tests the preceding analysis has been 
conducted on the basis of the delay map technique [11, 12, 13]. Furthermore the spatial 
complexity observed during the strong chaotic evolutions has been unfolded with the 
aid of the Karhunen-Loeve decomposition. 

2. Preliminary analytical and experimental models 

The analytical model proposed by Thomsen [2] is based on the following assumption: 
• the tangential inertia forces are neglected, 
• the shear and axial deformations are neglected, 
• the mass of the arch is concentrated on its crown. 
With the preceding assumption and using a mixed continuous-discrete formulation, the 
following ode's ofthe motion were derived; in this case, a=O and the eqs. read: 

... 2 [2 k 3] I + 2 PI + (1 - m m u) I + a· - m m "8 I = 0 

ii + 2 pm u + m 2 U + f( (f j + j 2 ) + a -[ + m 2 : I 2 ] = (q / m) CDS( Q T) 

(1 ) 
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In eqs. (1), with the symbology present in [2], f and u are respectively the anti­
symmetric and symmetric amplitudes, f3 denotes the damping coefficient, m and K are 
the coefficients of non-linearities depending on the mass and the opening angle of the 
arch, OJ is the ratio between the symmetric and anti-symmetric natural frequencies and, 
eventually, q and .Q express the non-dimensional amplitude and frequency of a 
concentrated vertical force at the tip of the arch. A minor improvement of the model 
(suggested in [2] and proposed in [5]) is obtained taking into account the 2nd order 
vertical displacement of the tip of the arch due to anti-symmetric vibrations; accordingly 
eqs. (1) are modified by the presence of the terms in brackets (a=l). 
With the aim of comparing and validating the previous models, a double hinged, steel 
circular arch having a radius R=90 em, a cross sectional area A= 3 x 0.4 em} and an 
opening angle 2cp 0=160° was constructed in the Nonlinear Dynamics Lab of University 
of L'Aquila. The choice of the cross section was done with the aim of confining the 
dynamics practically in the plane of initial configuration. In Figure 1 the analytical and 
the experimental models are shown. 

p(t) 

F igure I-The analytical and experimental models 

Interesting similitudes were discussed in [3] both for the regular and non regular 
dynamics. The corresponding analytical and experimental behavior charts explaining, 
the bifurcation phenomenon are reported in Figure 2 . 

... 
~ 
~ ... 
'" t 
.g "" 
u. ... 

--... 2.00 400 '00 .. CO to 00 
F_ng Frequency [Hz) 

Figure 2 -- Analytical (solid line a=O, dashed line a= 1) and experimental behavior charts 
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A small dynamic exciter to be applied on the tip of the arch was then 
constructed: it mainly consists of two opposite counter-rotating non balanced masses 
mounted on two coupled cog-wheels moved by a circular thin shaft transmitting a 
couple and driven by a step controlled, asynchronous, electrical engine. 
The two models, synchronized in a 2: I internal resonance condition by applying on the 
tip of the arch a concentrated mass, furnish a qualitatively correct prediction of the 
symmetric response instability by evidencing the occurrence of strong sub harmonic 
anti symmetric vibrations in a large frequency-range even at low excitation amplitudes. 
In the analytical chart shown in Figure 2 (left), several zones are observable: in the A­
zone the unimodal symmetric solution is the only stable solution; the B-zone, is the 
region of stability of the coupled, periodic, symm.-anti-symm. solution; the D-zone is 
the region where the two kind of solution belonging to the previous classes are both 
stable and coexisting and, eventually, in the C-zone, no periodic solutions are stable, 
and, after Hopf bifurcations, quasi-periodic solutions arise, leading eventually, to 
chaotic motions. In Figure 2 (right), the same region for the experimental model is 
reported. The shape of the plot qualitatively agrees with the preceding one: within the 
main instability region an inner core and two sub-regions are present: the latter are 
zones of stability of the coupled periodic motion, while the former, coherently with the 
analytical prediction, is the zone of non-periodic, complex motions. 
Even if the analyzed models give comparable results, four main points could be 
observed. 
Concerning the analytical model (proposed in [2] and [5]): 
• in the case of an high opening angle (160° in the considered case) the tangential 

inertia forces cannot be disregarded owing also the presence of a concentrated mass 
at the tip of the arch subjected, in the case of coupled solution, to an high anti­
symmetric (tangential) displacement component, 

• the distributed mass of the arch is of the same order of magnitude of the dead load 
applied to the crown and to concentrate it could produce imperfect results. 

Concerning the experimental model (proposed in [3]): 
• the behavior chart, even qualitatively in agreement with the analytical one, shows a 

quite bigger region of dynamic instability occupying the whole range of analyzed 
frequencies, circumstance probably related to the model imperfections and to the 
driving shaft transmitting extra-actions to the model, 

• during the observed complex (QP and chaotic) evolutions no measures where done 
on the spatial coherence of the measured displacements, circumstance not a priori 
justifying the proposed truncation on the companion analytical model. 

To go over the preceding points a new experimental rig (model, dynamic exciter and 
driving shaft) and a new analytical models are proposed and analyzed in the following. 
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3. New experimental set-up 

A new experimental model with same characteristics of the preliminary one, improved 
in the assembling of the pin-end constraints, was realized with the aim of verifying the 
possible accuracy of a reduced analytical two degree-of-freedom model even during non 
regular regimes observed in a large area of the forcing-frequency excitation control 
parameter plane. A parallel improvement in the assembling of the dynamic exciter was 
realized as well by reducing an asymmetry present in the first exciter and constructing a 
new shaft, linking, with a double cardan-joint, the exciter to the step-controlled engine 
and able to transmit, in the limit of a real mounting, only the required couple. The new 
experimental set-up, because of the cited improvements, gave more reliable results 
permitting to draw some useful observations that oriented the derivation of a new 
analytical model described in paragraph 3. 
The observed motions, cleaner in each test than those exhibited by the first model, again 
indicated a large area in which coupled symmetric-anti-symmetric motions arise with 
strong anti-symmetric components accompanying the directly driven symmetric ones. In 
the coupled case the mean amplitude of the motion considerably increase indicating the 
need to understand and possibly control the relevant bifurcation between the two 
different, somewhere coexisting, solutions. Figure 3 (left and middle) has been obtained 
by using a strobo-flash camera, and they permit to estimate the amplitudes of the motion 
during the dynamic evolution. In particular the two pictures were taken in a coexistence 
zone i.e. when at the same values of excitation parameters, both unimodal-symmetric 
(left) and coupled (middle) solutions are competing in function ofi.c .. 

.. !I-
Figure 3 - New expo setup: symm. motion (left), anti-symm. motion (center) and the exciter (right) 

From the picture in the middle, keeping in mind the observation on the necessity to 
include the tangential inertia forces in the analytical modeling, is also easy to estimate 
the order of magnitude of the horizontal component of the tip motion. In Figure 3 (right) 
the exciter with the shaft and the cardan-joint is shown as well. 
The first step of the experimental analysis was to realize a nearly 2:1 internal resonance 
condition between the frequencies of the first symmetric and anti-symmetric modes by 
adding an extra mass on the tip of the arch (Figure 3 right). An identification of a mass 
value of 2.211 Kg (set-up A) gave experimental frequencies very close to the analytical 
ones obtained with the new model described in the following. In Table 1 these 
frequencies are reported (first and second columns) together with those evaluated with a 
f.e. code both in the cases of undeformed (third column) and deformed (fourth column) 
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initial configuration: The agreement between experimental and analytical frequencies is 
considered very good with a relative error well below the 4%. 

Natural frequencies (setu A) 
Experimental Analytical Numerical Numerical (de!) 

OJ 2.65 2.685 2.667 2.582 

OJ,vmm 5.42 5.607 5.498 5.325 

Table 1 - Experimental, analytical and numerical natural frequencies 

After measuring the natural frequencies an identification of the dampings of symmetric 
and anti-symmetric vibrations was done acquiring free-decaying oscillations and 
interpolating the relevant maxima by means of an exponential law (see Figure 4): 

2: 
ill 
C 

8. 
0 
E 
E 
~ 
0 

- ~ 
0.02 

0.00 

-0.02 

-0.04 

0.00 1.00 2.00 
'Imo!s] 

3.00 

" ~ 
Ci 
E 
<0 
c 
2 
0 
E 
.g 
;; 
E 
E 
;;;-
~ 
<0 

4.00 

0.10 

0.00 

.0.10 

0.00 1.00 2.00 
11me!s] 

3.00 

Figure 4-Free decaying oscillations for symmetric (left) and anti-symmetric (right) oscillations 
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The interpolated values to be used in the companion analytical model (with 
adimensionalized time on the respect of the anti-symmetric natural frequency) are 
respectively: 2~s(J)s=O.071 (symmetric component) and 2~a(J)a=O.048 (anti-symmetric). 
After evaluating the modal parameters to be used in the analytical model, having 
observed in the experimental tests strong non-periodic oscillations inside the coupling 
zone, was necessary to validate the a priori choice concerning the spatial truncation (2 
modes) assumed in the first model. To this end, mounting accelerometers on eight 
points of the arch (in the radial direction first and in the tangential after), synchronous 
time series were acquired during the motion. Repeating the acquisition during periodic 
(simple and coupled) and a chaotic (always coupled) evolutions, it was possible to 
evaluate the spatial coherence by means of the Karhunen-Loeve decomposition [10]. In 
the periodic cases the proper orthogonal modes (pam 's) correspond to spatial shapes 
similar to the normal modes. In Figure 5, such simple cases (left and middle) were 
compared with the pom's corresponding to a full developed chaotic regime (right). 

unlmodalT1*locIc r 
... ·· -- -------- - -------

I~ 
I 

Figure 5 - Proper orth. modes (radial comp.): periodic (left and middle) and chaotic (right) evolutions 
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From Figure 5 it was possible to try the following conclusions: 
• the spatial shapes visited in average during a chaotic evolution looks like the ones 

pertaining the periodic response hence justifying, at a first level of approximation, 
the use of a simple, reduced 2 d.o.f. model also to predict chaotic motions, 

• no more than two shapes are involved in the planar dynamics of the arch being, 
further contribution, practically absent. 

With the validation of preliminary tests it was therefore possible to formulate a new 
analytical model coherent with the experimental evidence. 

4. New analytical model 

Following a nonlinear elastic mono-dimensional formulation the equations of the 
motion of the circular arch were derived by applying the extended Hamilton's principle. 
In the case of negligible shear effects, the planar deformation of the arch is described 
when the relations of finite extensional strain and change in curvature are expressed in 
terms ofu(rp,t) and v(rp,t), the radial and tangential components of the displacement field 
(see Figure 1). They are adimensionalized in the following on the respect of the radius R 
of the circular arch. Considering two points P and Q on the arch axis, infinitely close in 
the undeformed configuration, calling ds their initial distance and ds' their 
corresponding distance in the deformed configuration, expressing the distances in 
function of the displacement gradient and adopting the Lagrangian strain & as the 
measure of the axial deformation, the following expression is obtained: 

U'2 + V'2 u2 + v2 

&=u'-v+---+--+UV'-VU' 
2 2 

(2) 

Analogously, calling Lirp the difference between the angles formed by two infinitely 
close tangent vectors in P and Q (in the deformed and initial configurations) and 
dividing by ds the following relation for the change of curvature LiX is obtained: 

( 1) ( " V
'2 

- 2U'2 2v2 
- u2 

'" '" /I "J ~X= R ·lv +v+ 2 + 2 +2uv -vu +2vv -uu (3) 

Expressing the potential energy Z} by means of & and LiX, the kinetic energy .'7 by 

means of time-derivatives of the displacement field, taking into account the work w'c 
done during the motion by damping and external forces, the extended Hamilton's 
principle reads: 

12 f/Jo 12 f/Jo 

8 f f(.'7 -~e)drpdt+ f f8Wncdrp dt=O (4) 

From eq. (4) the pde's of the motion and the relevant boundary conditions are then 
obtained. A reduced 2 d.o.f. model is obtained by assuming a truncated Galerkin 
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expansion of the displacement field using, as shape functions, the first symmetric (f; ,gJ 
and anti-symmetric (f;,g2) eigenfunctions ofthe linear problem [14]: 

u( rp,t) == J; (rp). ql (t) + J; (rp) . q2(t) 

v(rp,t) == gl (rp). qJt) + g2 (rp). q2 (t) 
(5) 

Carrying out the space integrations, two ode's of the motion were obtained: the relevant 
coefficients are expressed in terms of space integration of the functions f and g. Eqs. (6) 
contain both quadratic and cubic nonlinearities and are accurate to describe moderately 
large oscillations. With high opening angles, like in the examined case, the dynamic 
deformation is practically inextensional: modifying the Hamiltonian (4) by adding, via a 
Lagrange multiplier, the inextensibility condition, the final equations read: 

iii + f-iI iII + cIOql + czoqlZ + cozq; + c30q; + C12qlq; = Psin(Q. r) 
(6) 

5. Analytical and experimental results 

Analytical frequency-responses at two different forcing levels are reported in Figure 6: 
at the lower forcing amplitude (left) the unimodal solution loses stability entering the 
resonance region and a coupled, periodic, two-mode solution bifurcates from it. As 
noted in the preliminary experimental tests, the coupled motion has an higher mean 
amplitudes of oscillations. At an higher forcing level, the preceding scenario is further 
complicated by the loose of stability, entering the resonance region, of the coupled 
periodic solution: the latter modification corresponds to an Hopf bifurcation activating 
solutions having complex time evolutions. Forcing-response curves for two different 
frequencies, are reported in Figure 7 and show the classical saturation phenomenon (see 
[8,9]): the pitch-fork bifurcation activating the two mode solution, supercritical at the 
lower frequency (left), becomes sub-critical at the higher one. 
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Figure 6-Analytical model: frequency-response plots 
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Similar plots are not directly obtainable with the experimental model: in fact, coherently 
with the nature of the exciter (the harmonic vertical force is obtained with two counter­
rotating unbalanced masses), varying the frequency of the excitation (the angular 
velocity of the rotors), an even wider change in amplitude, linked to the power two of 
the angular frequency n, is realized as well. This circumstance makes actually 
impossible to perform experimental tests at fixed values of excitation amplitudes and 
every test corresponds to a parabolic path in the frequency-amplitude excitation plane. 
A response curve, following the cited path, is reported in Figure 8. 

0>' 

300 400 500 
ForCing fraquency [hz) 

Figure 8-Experimenta1 model: response plot 

Within the limits linked to the previous observation, the agreement between the 
analytical and experimental plots appears good and encouraging the use of the new 
analytical model in predicting both the regular and non regular dynamics of the 
examined arch. A more general comparison between the two models can be observed on 
Figure 9 reporting the behavior charts of analytical and experimental models: 
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Figure 9-Analytical and experimental behavior charts 

The two charts were obtained reporting on the forcing-frequency plane the bifurcation 
points read on various response-curves. The agreement between the two charts appears 
good both qualitatively and quantitatively, again confirming the accuracy of the new 
analytical model in a wide range of excitation amplitudes and frequencies. Concerning 
the main characteristics of the response a good agreement is found not only in the 
periodic zones: inside the sub-region of complex motions, higher increasing complexity 
is revealed approaching the core of the sub-zone both in the analytical and in the 
experimental case. In particular, increasing the forcing frequency and entering the 
instability region from it's boundary qualitatively different motions have been detected: 
when the periodic coupled solutions loses stability via the Hopf bifurcation, quasi­
periodic, chaotic and then again quasi-periodic motions are observed, both in the 
analytical (see Figure 10) and experimental case. 
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Figure lO-Analytical model: complex transition inside the sub-area of non-periodic responses 

In Figure 10 a transition of complex response for a forcing amplitude of 6N is reported. 
Just after the Hopfbifurcation observable in the corresponding chart (Figure 9, left) the 
attractor is the two-torus whose Poincare section is reported in the first column. 
Evolving this solution from a 2T -periodic motion (the anti-symmetric component 
always is subharmonic), the section is coherently constituted of two disjointed closed 
curves. The evaluation of the maximum Lyapunov exponent, correctly gives a zero 
value. Increasing the forcing frequency, the surface of the torus becomes fuzzy, the 
Lyapunov exponent increases (second column), then, after the torus breakdown, a fully 
developed chaotic regime is observable in column 3. Further increasing the forcing 
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frequency, passing again for a fuzzy torus (column 4), the motion becomes again quasi­
periodic (column 5). 
A corresponding analysis was conducted on experimental time series using the delay 
map technique allowing the estimation of global complexity indicators like the 
correlation dimension and the maximum Lyapunov exponent: following this way it was 
possible to detect, also in the case of exeprimental tests, the increasing complexity 
entering the core of sub-region pertaining the complex-motions. 
At a fixed forcing amplitude of p=2N and frequencies respectively ilqp=4.87 and 
Qh=4.92, two sample reconstruction are reported in Figure 11; they correspond to a 
quasi-periodic (first line) and a chaotic (second line) case. Respectively for the two 
cases, on the left, middle and right part of the plot are reported: 
• a 2D-projection of the reconstructed phase space (delay coordinates) using the right 

delay coming from the mutual average information analysis, 
• the classical log[C(r)]-log(r) correlation curves corresponding to embedding 

dimension ranging from n=2 to n=12, 
• the slope estimation giving, respectively a correlation dimension dc=2 for the quasi­

periodic case, and de =3.1 for the chaotic one. 

Figure II-Experimental model: complex transition inside the sub-area of non-periodic responses 

6. Conclusions 

The contemporaneous analysis of an experimental and an analytical models of a double 
hinged circular arch gave a complete understanding of the dynamical behavior 
concerning the problem of the dynamic instability of the simple unimodal symmetric 
solution under the action of a concentrated, vertical load applied on its tip. Preliminary 
experimental tests furnished hints for a correct analytical modeling. Then, a systematic 
analysis conducted on the two models on wide ranges of the forcing parameters showed 
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a good qualitative and quantitative agreement between the two models: while in the 
cases of periodic evolutions the comparison was done on the basis of the modal 
components, when complex motion arise, the comparison was done on the basis of 
synthetic complexity indicators like the correlation dimension and the maximum 
Lyapunov exponent (delay map technique). Eventually, because theoretical results 
concerning strangeness and chaoticity could be related more to the analytical modeling 
than to the real behavior of structures, in the case of complex time evolutions the help of 
a companion experimental model is crucial for furnishing an actual mechanical 
framework to the understanding and interpretation of strange phenomena [13]. 
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1. Introduction 

Recent studies on alternatives for structural systems designed to support 

deepwater offshore platforms have introduced the compliant structure 

concept, encompassing a wide class of structures into which may be 
incorporated, as sub-classes, compliant towers such as guyed towers [1], 

Gamma tower [2], Roseau and others [3]; and buoyant systems such as 
semi-submersibles [4] and tension -leg platforms [5]. The common 
characteristic of these structures is their ability to undergo large 
displacements under the action of environmental loads. A particular 
concept of compliant tower is known as guyed tower, whose behavior 
has been extensively studied, leading to the design, fabrication and 

installation of Lena Guyed Tower at the Gulf of Mexico [6]. The 
guy lines are connected to the tower at a position near to the level of the 
resultant environmental loads and inertia forces. These guylines present 

highly variable stiffness, provided by a "clump weight" mechanism near 

the seabed touchdown point. The stiffness increases as these weights are 
being suspended; however, in storm condition the greater values of the 
displacement causes the total uplift of some guylines, thus 
increasing the catenary length, reducing the guy line stiffness and 
limiting the maximum stress on the cable. It is the purpose of this paper 
to study the effect produced by coupling a vibration absorber to the tower 

23 
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in order to reduce the displacements of the tower for storm conditions 
and excitation near the first natural frequency. 

2. The Finite Element Model for a Guyed Tower 

The present paper studies the global behavior of a 330 m guyed tower, 
considering environmental loading typical of the south-eastern Brazilian 
coast. The analysis employed a "complete" finite element model, shown 
in the figure 1, with 468 three-dimensional nonlinear beam elements. The 
behavior of the guy lines is simulated by nonlinear springs with 
associated forcing functions determined by previous static analysis. The 
forcing function vector consists of environmental loading generated by 
the ocean waves, sea currents and wind effects. 
The results presented here correspond to the analysis for environmental 
storm conditions, consisting of deterministic Airy waves with periods 
lOs, 12 sand 14 s and height values close to 9m; current velocity at sea 
surface is 1.45 mls; at the sea bottom is 0.25 mls; the reference wind 
velocity is 55 mls. 
The load distribution profiles corresponding respectively to the three 
forcing functions are depicted in the figure 1. The tower is free to move 
along the three directions in space and the time history related to each 
mode has correspondingly the three components in x, y and z. 
The dynamical analysis has been performed using a computer code 
developed at COPPE. The details could be found in reference [9]. 
For the present discussion, in order to build up a simplified model, it is 
necessary to know the nodal forces and the nodal displacements. Some 
typical time histories for these two variables are presented in the figure 2 
a-c. The load has clearly a nonlinear periodic behavior, with period T = 

14 s equal to the wave exciting force. The displacement displays also 
some non-linearity, but much less markedly as compared with the nodal 
forces. The period is again the same as that of the wave. 
It is important to point out that the fluid-structure interaction was taken 

into account in the calculations. The effect of the variable relative 
velocities of the fluid and the structure at the different members are 
therefore already computed in the time histories. 
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Figure 1 - Three-Dimensional Model and Views of the Coupled Model 

The forcing function vector, in this example, was oriented in such a way 
as to preserve the motion essentially in the same plane, namely the x-z 
plane. This results in an almost plane motion, with displacements in the y 
and z directions practically equal zero. 

This complete analysis has the advantage of giving reliable results, very 
close to the real physical model. It is however expensive. In order to 

reduce the computational costs a simplified model can be used initially to 

perform a parametric analysis, leading to the best configuration that 
minimizes the displacement amplitudes. Afterwards this solution can be 
checked with a more sophisticated model. 
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Figure 2.a - Time response for horizontal displacement (x direction) at 3D model tower top (z = 330.0 m) 
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Figure 2.b - Time history of nodal load vector in x direction applied on the axis of the 3D tower model at 
level z = 75.0 m 

3. The Simplified Model 

The simplified model consists of two steps. First we search for a lumped 
mass system that approximately reproduces the displacement time history 
of the tower, as calculated by the finite element model, under equivalent 
loading conditions. This is a kind of inverse problem that could be very 
complicated, unless some simplifying assumptions are made, within the 

expected approximation range. 
Consider the lumped mass system of the figure 3. From the FEM model 

it is possible to evaluate the load vector associated to this system, 
consisting of equivalent forces acting on each virtual mass. The motion 

will be considered plane, consistent with the previous result. The rod is 
hinged at the basis and the guy lines are substituted by springs as in the 
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FEM model. Now, smce the displacement amplitude of the points 

connected to the guylines are moderate, the variation of the spring force 

with the displacement amplitude 
can be taken linear, with a spring constant K equal to the tangent to the 
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Figure3. Wave and current load distribution 

I Wind load 
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Table I. Nodal forces 

Node Load 

15 8144.00 

14 6601.36 

13 3428.22 

12 177RRO 

II 949.66 

10 260.49 

9 6H5 

8 Iii 73 

7 5.26 

Ii 295 

~ 391 

4 8.07 

3 16.85 

2 3127 

1 0.24 

curve force-displacement at the point corresponding to the average force 
on the guyline (Fig. 4). 
As can be seen from the FEM analysis, both the displacements and the 
nodal forces are periodic functions of time with period equal to the 
period of the exciting wave. We will consider here, the displacement 
and nodal force vectors as harmonic functions with period 
coincident with the exciting external force. This is not strictly true for 
non-linear behavior, but it is a good approximation for practical 

purposes and within the frame of this simplified analysis. Considering 

TABLE 2. Natural spectrum of the guyed tower. First 10 natural modes. Period in 

seconds. 

Mode I 2 3 4 5 6 7 8 9 10 

Period 9.998 2.479 2.437 1.258 1.l06 1.086 0.787 0.634 0.623 0.584 

the spring displacement within the linear range as shown in the figure 4, 
and using the complete FEM model analysis the natural spectrum of the 
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tower is found (Table 2).The problem we have now is to find the 
appropriate lumped mass oscillator, such that it will reproduce 
approximately the same displacements at the corresponding levels 
measured - along tethe z axis - under the action of the same forcing 
functions, with the additional requirement of having the same frequency 
spectrum. The tower is reduced to a bar 

with concentrated masses located at the 
main horizontal planes. Figure 3 
shows the distribution of the external 
forces which will be approximated by 

a harmonic variation with time, with period 
consistent with the time history shown in 

the figure 2 Following the standard 
procedures of modal analysis, it can be 

shown that the above requirements are met 
if the masses are calculated as follows: 

M =P-TM·P-l 

F 

~/~/ 
6F -------------- K __________ __J _______ _ 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

tls 

Figure 4.Typical guyline 
force-displacement function 

(1) 

where M and M* are the mass matrix and the generalized -diagonal- mass 
matrix respectively. The vectors (A , P and x are the k-th modal shape 
vector, the load vector and the displacement vector respectively. The 
frequencies rok and roe correspond to the k-th mode and the exciting 
external force - wave - respectively. The parameter Sk is the generalized 
damping coefficient related to the k-th mode. The matrix P is the mode­
shape matrix. 
Although the analysis has been performed for the wave, current and wind 
data specified in the previous section, it is expected that for small 
variations of the exciting forces the displacement and load distribution 
will be kept essentially the same. The amplitude varying according to the 
denominator ofthe first term in (2). 
Summarizing, the present method is aimed to determine equivalent 
masses that would give for the simplified model, approximately the same 
time history for the forcing functions and the displacements at the 
corresponding z-coordinates of the complete model. Note that we are 
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interested in the dynamical contribution of the load and displacement 

vectors, that is, the total deviation from the average value. The average 
value of the load is only important, in this case, to determine the 

constants of the equivalent springs. 
Figure 5 shows the mode shape for the first mode. Clearly the first mode 
is a bending free mode and for the frequency range appearing in practical 

lDr-------------------------------------~ 

lD 

100 

O~--~~--_+--_+--~--~--~--+_--~~ 

000 010 OJ) OJ) 04) Oil oro 01) (lID OCX) 100 

Figure 5 - Vibration mode shapes of tower axis in xz plane. (a) pendular mode 

application this mode will store practically all the energy transferred to 
the structure. So it is reasonable to represent the tower structure by a 
single mass attached to a spring such that the natural frequency will 
coincide with the first natural frequency of the tower or of the lumped 
mass system, which is the same. The parametric study of a pendulum 
introduced as a vibration absorber can therefore be performed much more 
easily, and the results obtained with this two degree of freedom, non 
linear system, reproduces satisfactorily the most important aspects of the 
amplification factors for the tower, as far as the basic design variables are 
concerned. 

4. The Vibration Absorber Model 

Let us now tum our attention to the two-degree of freedom model shown 
in the figure 6. The mass M represents the equivalent mass of the tower 
corresponding to the position where the pendulum is connected. In this 
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paper the pendulum will be considered hinged at the top of the tower. 
The mass M is taken equal to M;. The fundamental frequency for this 
spring-mass single system is chosen 

to be lVl and consequently the 
spring constant is K = lVI

2 M; . 
The load vector is given by 

F = Fo Sen(lVet + a) 
where Fo = (N'p . Clearly lVe is the 
frequency of the exciting external 

force. Note that the eigenvectors are 
normalized such that the displacement 
at the level where the pendulum 

Fa sen(ooet + a) 

c 
! 
I 

I 6(t) 
r-------------------------~ 
, x(t) ! m 

is hinged equals 1. The governing Figure 6. Simplified two degrees of freedom model 

equations for this system are classical. They read: 

d 2x dx d 2 

(M + m)-2 + c- + Kx + -2 (B sen B) = Fo sen(lVe + a) 
dt dt dt (3) 

d 2B dB d 2x 
ml2 -2 + C P - + K pB + mgl sen B + (ml cos B) -2 = 0 m m m 

(4) 

A previous parametric analysis [7] for a similar case lead to the following 
indications for the choice of the pendulum characteristics - m and I - for 
large values of e, that is in 
the non linear region: 
For OJe < OJ, best choice OJp < OJe 

For lVe = lV, lVp arbitrary 
For lVe > lVl best choice lVp > lVe 
Of course for the linear behavior the classical result holds, that is 
lVp = lve • For all cases the amplitude of the pendulum should be limited 
to the stability region of this system and to the conditions imposed by the 
design specifications. 
The following combinations have been test to obtain the time response 
of the displacements e(t) and x(t): 

Table 3. Selected configurations. K has been put equal zero. 

0628 
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Case V represents the introduction of the vibration absorber for the case 

studied with the FEM without the pendulum. There is an effective 
reduction of the amplitude of about 33% ( Fig. 7 ), for a pendulum with 

mass equal to 600 metric tons and a damping ratio ~p=0.02. Although 

high, if we consider the absolute value, the mass of the pendulum is 

about 10% of the tower total mass, which falls within an acceptable 

design value. The pendulum length is equal to 50 m in this case which 

depending on the tower design specifications could be a limiting factor 

for the use of this device. 

Cases III and IV compare the effectiveness of two pendulums as energy 

absorbers, both with the same natural frequency but different masses, 

when the structure is under an exciting force with period equal to 12s. 

Clearly from the figures 8 a and 8 c, the pendulum with mass equal to 

600 metric tons is superior. The amplitude reduction reaches about 

38.5% for this case, while is only about 8.2% for a pendulum with half of 

that mass. The maximum pendulum angular amplitude is about the same 
for both cases, circa 1.0 rad. for the pendulum with mass equal to 300 
metric tons and 0.9 rad. for 600 tons. For both cases the damping ratio 
was taken equal to .02. 
For an exciting force with frequency coincident with the natural 
frequency of the structure, We=W\ it is seen from the time histories in 

figures 9 a and 9 c that, although the heavier pendulum introduces a 

higher reduction factor of around 48%, nevertheless the pendulum with 

mass equal to 300 tons provides a reduction in the amplitude of circa 

29%. So it can be said that for the resonant frequency both pendulums 

are effective in the reduction of the structure amplitude. Again the 

angular amplitude for the lighter pendulum is slightly greater than that 

for the heavier one. Both fall within the range {+ 1 rad. , -1 rad. } which 
is reasonable for practical purposes. 

The system (3)-(4) was integrated numerically using the Runge -Kutta 

method. For the present analysis the structural damping C was assumed 

to vanish. 

Although the model used here introduces considerable simplifications, 

the results are satisfactory for practical applications and platform design. 
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Figure 7 • Uncontrolled and conuolled tower top displal:elnent (llh) responses of 2D model under wave 
(To = 14 s) for pendular absorbers (I = 50 m; mp = 600 t) with damping factors ~p = 0.02 

5. Conclusions 

The use of a pendulum as energy absorber, in order to reduce the 

amplitudes of the tower, is effective provided that the proper combination 

of frequency and mass is used. The frequency of the pendulum should be 
tuned close to values of the frequency of the external force. This is 
however not enough, it is also necessary to adopt a mass sufficient large 
as to store an energy amount that would allow for substantial reduction in 
the tower displacement. This can be tested with a simple model as 
described above. The damping effect is effective in the reduction of 
amplification factor but less important than the mass. 
Another item that should be considered in the design is the maximum 
angular displacement of the pendulum and its length as well. Both should 
be limited to an acceptable range specified in the design. The 

introduction of a torsional spring Kp can reduce the angular amplitude. In 

that case however it is necessary to change the length of the pendulum in 

order to keep the frequency at a convenient value necessary to reduce the 

displacements. In general it would be necessary to increase the length up 

to a value given by: 

1 ( 4K J I = -I; 1 + 1 + --p 

2 gl;m 
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where Ii is the length of the pendulum to provide for the "optimal" 

frequency without the torsional spring. For roJro. > 1. cnr. should be 
always greater or equal to mc,. in which case it will be not necessary to 

increase the length or the pendulum. 
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One of the most important advantages in diminishing the displacemeht 
amplitudes of the tower is the reduction of the danger of collapse due to 
the fatigue of the guyed lines. 
The use of this type of energy absorber is becoming more and more 
frequent in towers of the type described in this paper and in tension-leg 
platforms as well. Other possibilities including active control and more 
complex mechanisms are under investigation now. The use of variable 
mass devices deserve also the attention of engineers and investigators, 
controlling for instance the water contents of reservoirs placed in 
strategic points of the structure. 
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1 . Introduction 

A planar pendulum is perhaps the simplest and most quoted example of a dynamical 
system, yet when driven its simplicity of description belies a range of complex dynamical 
motions. Historically interest was focused on, and indeed restricted to, small 
displacements from the vertical, but more recently numerical simulations may now 
incorporate full nonlinear effects and large amplitudes without restrictions to small 
parameters. If driven vertically at the pivot, a pendulum which can freely move in the 
plane exhibits equilibrium states (corresponding to the hanging and inverted positions), 
periodic solutions (oscillations and rotations), as well as chaotic motions, all of which can 
easily be seen in a mechanical experiment. Miles [11] produced an excellent overview of 
the basic, qualitative dynamics but research interest is not yet exhausted with some recent 
results focusing on a purely vertical forCing investigating the topological structure of 
phase space [6], chaos [2] and the stability of the inverted state [1,8]. 

We consider here the so-called parametrically excited pendulum idealised as a mass on a 
light, rigid, inextensible rod, moving in a plane and driven by a periodic vertical force. 
For mathematical convenience the model is often scaled [4], leading to the fundamental 
equation 

J + ct9- + (1 + pcos(OJt)) sin tJ = 0 (1) 

where tJ measures the anti-clockwise angle from the downward hanging state. The terms 

p and (j) correspond to the scaled amplitude and frequency of the driving force used 
generally as control parameters. In practice the damping may have a nonlinear velocity 
dependence and for sm~l, low velocity oscillations, be governed by friction in the pivot, 

35 
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but is taken here as a constant (c = 0.1) times the velocity in line with earlier experimental 
and numerical investigations. Writing 

dV '.<1 _=stnu 
dt} 

v = - cost} 

allows us to view the dynamics as a particle moving in a potential energy function (V). 

(2) 

Small oscillations correspond to periodic motions within the well while rotations lead to 

escape from the local potential well between (+7r, -7r), see figure 1. In this way 
comparisons can be made with general results regarding escape from a potential well 
which underpins a wide range of problems including ship capsize and buckling [14]. 

For small driving amplitudes the downward hanging state forms a stable equilibrium of 
the model system (1). However, in line with the behaviour of linear counterpart known as 
the Mathieu equation [10], this hanging state becomes unstable in a series of zones, the 

most predominant of which is located about co = 2, on which we focus our attention. A 
linear analysis can reveal some insight but for the full nonlinear problem numerical 
simulations are preferable. 

Numerically we can fix one parameter, co say, and follow the stable solutions which 

emanate from the hanging state as we vary the other parameter p using numerical path 
following techniques [9]. For example the schematic diagram of figure 2 shows that if co 
is fixed at 2.1 and p increased, then the hanging solution remains stable until a pitchfork 
bifurcation occurs (denoted at P F). Thereafter the only local stable solution is an 
oscillation whose period is twice the period of the forcing. As p increases further this 

solution remains stable until the system breaks symmetry (at S), after which two anti­
symmetric oscillating solutions exist of which only one is drawn on the figure. This 
solution then undergoes a cascade of period doubling bifurcations at F culminating in a 
chaotic oscillating motion, which is stable over only a very small range of the parameter. 

For a very small increase in p the chaotic motion loses stability via a global bifurcation 
and thereafter a trajectory seeks an alternative steady state which almost always 
corresponds to escape from the local potential well. Such solutions can be rotating 
periodic solutions, but more typically this escape leads to a chaotic motion which can be 
thought of as a global cross-well motion involving oscillations, in some well, followed by 
an irregular series of left and right rotations. Experimentally such motion produces a 
series of clockwise and anti-clockwise rotations and oscillations of the pendulum in a 
random-like manner where almost any sequence of left and right swings is possible. This 
motion is referred to as a tumbling chaotic solution. 
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Standard techniques of path following can also be extended to locate and follow 
bifurcations as both parameters are varied [9], so that we can plot, in figure 3a, the zones 

in parameter space in which the various solutions described above exist. 

The same routine can also be carried out to locate and follow rotating solutions. If we 
consider the most basic rotating solution which appears at a saddle node bifurcation at A 
and performs one rotation in one period of the forcing, then this also undergoes a period 
doubling bifurcation (which we shall denote B) and subsequent cascade (at F) to a 
rotating chaotic motion shown in figure 3b. Again this chaotic solution is stable only over 
an extremely small range of the parameter space, giving way typically to the tumbling 
chaotic motion. The zone in parameter space where this basic period-l rotating solution 
exists and is stable is shown between the lines A and B on figure 3b. This periodic 

motion restabilises at U creating another zone of stable motion. 

Stable subharmonic solutions also exist, both of an oscillatory and rotatory nature. These 

may be classified according to the period (n) and, in the case of rotations (r), the number 
of complete rotations, i.e. (n,r). These subharmonic solutions may coexist with the 
simpler, harmonic motions and a full examination requires investigation of their basins of 
attraction [5]. 

If we superimpose all of these solutions on the parameter space then a rich structure 
exists, with coexisting solutions the norm rather than the exception. The solution onto 
which the system decays will depend crucially on the initial conditions given, which leads 
to complicated basins of attraction. Furthermore, a Melnikov analysis [5] shows that as 
we increase p the basin boundaries become fractal [12,15]. As a consequence the 
resulting dynamics is complicated even for this 'simple' system. Many of these motions 
can easily be viewed experimentally, and worthy of note is the fact that the tumbling 
chaos is stable over a reasonably broad range of the parameter space. Whereas the 
oscillating and rotating chaotic motions exist over very narrow windows of parameter 
space and even then are almost indistinguishable from a periodic motion with noise 
superimposed. 

2. Flexible Control 

So far we have restricted our attention to stable solutions, but it is also known that 
embedded within the chaotic attractor is a large (possibly infinite) number of unstable 
periodic solutions. Precisely locating these unstable solutions can be carried out purely 
numerically (using a Newton-type scheme), by using a topological analysis to guide 
numerical studies [7] or via a direct examination of a time series using the method of close 
returns. 
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In a seminal paper by Ott, Grebogi and Yorke [13] proposed a method of control to utilise 
these embedded solutions. Their method as proposed was brilliantly simple, using the 
chaotic dynamics of the system to approach as close as one wished to any desired 
solution. The control method forced the system onto a stable manifold of the unstable 
orbit (or more precisely a linear approximation to it) and so thereafter no control is 
theoretically needed; once again the system does all the work. Since that time many other 
methods have been proposed to carry out the same task, though to some extent these 
disguise the simplicity of the original concept. 

Combining a mixture of methods to locate unstable orbits, and developing robust methods 
for control even in the presence of noise, means that now we are able to select a desired 
solution from a large selection of unstable motions onto which the system can be 
controlled [4]. Furthermore, a chaotic solution can be controlled on to a combination of 
these solutions without globally changing the system parameters, as shown in the time 
history of angular velocity of figure 4; 4 different desired orbits have been stabilised and 
each time control is turned off the trajectory is attracted to the chaotic motion. 

3. Inverted Solution 

It has been known for some time that if the pendulum system is driven hard enough, the 
inverted state can stabilise [8]. Recently interest in this phenomenon has been rejuvenated 
considering multiple pendulums [1]. An examination of an effective potential energy 

function (V.ff) by separating the rapidly oscillating motions from the smooth components 
for m »1 yields 

2 

V"ff (6) = - cos 6 + ~ sin 2 6 
4m 

(4) 

plotted in figure 4. From this relationship we may analytically determine the parameter 

values for which the inverted solution stabilises, P A' For m > 2 results from numerical 
simulation closely match this analytical result [3] though this analysis gives no 
information of the subsequent dynamics within the well. 

If, instead of a purely vertical forcing, a small tilt is given to the system (10, say) then 
perhaps it is not surprising that the subsequent stable inverted solution is no longer 
perfectly upright (6=n). What is remarkable is that, for fixed m, as p is increased, this 

solution first stabilises in a solution whose mean variation (ljI ) of angular displacement 
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from the inverted state ('lJ=rc) attains reasonably large values, as shown in figure 6, and 

only approaches ljI = 1 as ill increases. 

4. Conclusions 

A driven pendulum forms an archetypal dynamical system which can exhibit a wide range 
of dynamical response. With parametric forcing the system displays three types of chaotic 
motion; rotations, oscillations and equilibrium states. Unstable periodic orbits embedded 
within the tumbling chaos motion can also be viewed in conjunction with a suitable 
scheme. In addition such a pendulum has the interesting property that rapid excitation 
leads to stabilisation of the inverted state. 
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Figure 1. 

Figure 2. 

(a) 

(b) 

(c) 

Solutions visualised as motions of a particle in the governing potential energy function: (a) 

stable (filled circle) and unstable (hollow circle) equilibrium, (b) oscillations and (c) 

rotations. 

~1 

PF S F G 
p 

Schematic representation of solution paths for fixed forcing frequency eo=2.1. PF is where 

the equilibrium state becomes unstable (the dotted line indicates the unstable path). S 

corresponds to a symmetry-breaking bifurcation, while F represents the complete 

Feigenbaum cascade of period doubling bifurcations. G corresponds to a global bifurcation. 
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Motions Within the well 
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Zones of stable solution of (a) hanging and oscillating motions, and (b) rotating motions in 

the space of parameters. In (a) PF denotes the line of pitchfork bifurcation which is 

subcritical to the left of the point c, S, the symmetry breaking, F the Feigenbaum casad: 

of period doubling, A the period two fold (saddle-node) line. Escape denotes the zone for 

which no major stable solutions exist so that almost all trajectories leave the local potential 

well. In (b) A is the saddle-node, B the first period doubling to a R(2,2) motion, F the 

subsequent cascade to rotating chaos. 
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Figure 4. 

o 

- \ 

-2 

Aexible control. The chaotic tumbling motion is controlled on to various solutions. Once 

control is turned off the system once again behaves chaotically and may approach another 

chosen solution. The controlled unstable solutions are a rotating (1,1), a subharmonic 

rotating (5,5), a tumbling (5,2) and an oscillating (2,0) motion. 

Figure 5. Effective potential function for the inverted state 
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Figure 6. Variation of mean oscillation from the upward vertical If! versus p. 
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CONTROL OF OSCILLATIONS IN SYSTEMS 
WITH MANY DEGREES OF FREEDOM 
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pro Vernadskogo 101-1, Moscow 117526, Russia 

Abstract. Two procedures for the control design in dynamical systems subjected to the 
control and state constraints are described and applied to the control of oscillations. The 
first approach is based on the decomposition of the original system with many degrees of 
freedom into simple oscillators; the second one is an extension of Kalman's method. Both 
approaches produce explicit control laws satisfying the constraints imposed and driving 
the system from a given initial state to the terminal state in finite time. Several examples 
are presented. 

1. Introduction 

There exist several approaches to the control design in dynamical systems with 
many degrees of freedom. In the classical linear methods of automatic control, the 
control u is represented as a linear operator of the state x: u = Lx. This approach 
has the following shortcomings. In the vicinity of the terminal state x = 0, where 
x is small, the control u is also small. Thus, the control possibilities are not used 

in full here; as a result the time of motion T is infinite, and x -+ 0 as t -+ 00. On 
the other hand, if x is large enough, then u also becomes large, and the constraints 
imposed on control can be violated. Besides, the application of linear methods to 
nonlinear systems is often questionable. The methods of optimal control [1] are 
applicable to nonlinear systems and can drive the system to the terminal state in 
minimal time, taking into account various constraints. However, it is very difficult 
to obtain closed-loop optimal controls for systems with many degrees of freedom. 
Such well-known methods for the control design as the method of variable structure 
systems and feedback linearization do not explicitly take into account the control 
and state constraints. 

In this paper, we consider two approaches to the control design for dynamical 
systems in the presence of constraints. The first one is based on the decomposi­
tion of the system with many degrees of freedom into linear oscillators controlled 
by bounded forces. The second approach is an extension of well-known Kalman's 
method [2] ( originally developed for linear systems in the absence of constraints) 
to the case of constraints imposed on the control and state variables. Note that, 
even for linear systems, the control problems are themselves essentially nonlinear, if 
the control constraints are taken into account. As examples of our approaches, we 
consider the control for systems of oscillators, distributed-parameter elastic systems, 
and a system driven by an electric DC motor. More details and examples related to 
the approaches described below can be found in [3-6]. 

45 
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2. Decomposition 

We consider a dynamical system with n degrees of freedom described by equa­
tions 

Ai + Cx = Bv + f(x, X, t); v(t) E V, f(x, X, t) E F. (1) 

Here, x E Rn is a vector of generalized coordinates, A and C are constant symmetric 
positive definite n X n matrices of the kinetic and potential energy, respectively, B 
is a constant n X m matrix, f is a given n-vector of nonlinear terms, and v E Rm is 
a vector of controls. The values of v and f are bounded by the given sets V C Rm 
and FeRn, respectively. We seek for a feedback control law v(x,x) which satisfies 
the imposed constraints and drives the system (1) from any given initial state 

(2) 

to the zero terminal state x(T) = x(T) = 0 in finite time T (not fixed a priori). Let 
us introduce normal coordinates q = (ql, . .. , qn) defined by the transformation 

x = Hq. (3) 

Here, the n X n invertible matrix H consists of n columns hI"'" hn which are the 
eigenvectors of the eigenvalue problem 

(C-AiA)hi=O, i=l,Oo.,n, (4) 

For the sake of simplicity, we assume that the problem (4) has n different eigenvalues 
AI, ... ,An. Then the transformation (3) reduces equations (1) to the system oflinear 
oscillators 

qi +W;qi = Wi + Zi, Wi = A~/2, i = l,Oo.,n. (5) 

Here, Wi is the eigenfrequency of the ith oscillator, whereas Wi and Zi are the com­
ponents of the n-vectors wand Z defined by 

(6) 

The oscillators in (5) are coupled only through the control and nonlinear terms. On 
the strength of (1), the vectors wand Z belong to the following sets in Rn: 

(7) 

Let us consider Wi and Zi in each equation (5) as controls of two independent players. 
The first player which chooses Wi tends to bring the ith equation (5) to the zero 
terminal state qi = qi = 0 in finite time, whereas the second player choosing Zi 

counteracts. The first player can succeed, if his control possibilities exceed those of 
the second player. Thus, we corne to the following conditions. Let the n-dimensional 
parallelepiped P defined by 

P: I Wi I ::; w?, i = 1, 00., n (8) 
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Figurp I. Inclusions (9). 
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p 
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(9) 

Here, 8, is an n-dimensional ball of the radius E. Under the condition (9), we 
take 

w = -;:; + U (J 0) 

where u is a new n-dimensional vector of control. Substituting (10) into (5), we 
obtain 

(11) 

The inclusions (9) ensure that then' exists an n-dimensional rectangular paral­
lelepiped 

U: IUil:::: u~, i = 1, .... n, (1:2) 

such that any values U E [f are admissible. It means that, for any U E U and any 
;:; E Z, the vector w [rom (10) satisfies the constraints (8). In other words, for any 
11 E U and any f E F, there exists/' E \/ such that tilt' corresponding Vi given hy 
(6) satisfies (8) and is presented ill the form (10). 

Thus, the inclusions (9) can he fPgarded as sufficiellt controllability conditions 
for the system (1). {:nder these conditions, tlw control design for the system (1) is 
reduced to the control of simple subsystems (11) with onp degrep of freedom each hy 
meaTlS of independent control forces Ili hOllnded by cOllstraints (12). To minimizp 
the time of control, let us choose the time-optimal control for each subsystem (11). 
This feedback control is given by [1] 

Hi (qi, qi) = lL~ sign [if) (T) - y], 

( .) o· () . 11i qi, qi = lii slgn.r = -11i sIgn y, 

Ip(:r) = (_:1'2 - 2:1:)1/2, -2::::.r:::: 0 

~'(:r) = d:r + :2), .r < -:2;~)(.r) = -1jJ( -:/;), :1' > 0 

( 0)-1 2 
X = lI i wiqi, 
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Here, x and yare, respectively, the non-dimensional coordinate and velocity of the 
ith oscillator. The switching curve y = 1jJ(x) for the control (13) possesses central 
symmetry and consists of semicircles of unit radii with centres at the points y = 0, 
x = ±(2k + 1), k = 1, .... In Fig. 2 the solid line gives the switching curve, and the 
thin line is one of the time-optimal trajectories. The arrows show the direction of 
motion along the trajectory. 

x 

Figure 2. Time-optimal feedback control of the linear oscillator. 

The total time of control is given by 

T = max Ti , i = 1, ... , n, , (14) 

where Ti is the time of control for the ith oscillator. The following upper estimate 
on Ti is obtained in [3] 

T.( ° ,0) < (0)-1 ['/2 (2 ° -1 .)1/2] , qi' qi _ IT ui p, + uiwi p, , (15) 

[ 2 ° 2 ·0 2]1/2 Pi = wd qi) + (qJ , Wi> 0, i = 1, ... , n. 

Here, q? and q? are the initial data for the ith oscillator related to the initial data 
(2) by equation (3). 

The procedure described above makes it possible to obtain the control satisfying 
the imposed constraints and driving the system (1) to the zero terminal state x(O) = 
:i:(0) = 0 in finite time which is estimated from above by means offormulas (14) and 
(15). The choice of parallelepiped P satisfying the conditions (9), in other words, the 
choice of the constraints w? in (8) and u? in (12), can be used in order to minimize 
the total time of control (14). 

3. Distributed-Parameter Elastic System 

Let us apply the decomposition approach to an elastic distributed-parameter 
system described by the equation 

Wtt = Aw + v. (16) 

Here, w( x, t) is a scalar elastic displacement depending on the position vector x E Rn 
and timet, where x belongs to the domain n c Rn and t 2: O. In (16), the distributed 
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control force v is bounded by the constraint 

[v(X, t)[ ::; va, x E 0, t ~ 0, (17) 

where va is a given constant, and A is a linear elliptic differential operator containing 
partial derivatives with respect to Xi, i = 1, ... , n. The coefficients of A are 
independent of t, and its order is even: ord A = 2m. For example, if m = 1 and 
A = 6., equation (16) becomes the wave equation, and if m = 2 and A = _6.2 , it 
describes the vibration of beams (for n = 1) or plates (for n = 2). Homogeneous 
boundary conditions are imposed at the boundary r of the domain D: 

Mw = 0, M = (M}, ... , Mm ), x E r, t ~ 0. (18) 

Here, MJ is a linear differential operator of order ord Mj < 2m with coefficients 
independent of t. In particular, if Mw = w, we have the Dirichlet condition. The 
initial conditions are 

w(x,O) = wo(x), Wt(x,O) = WtO(x). ( 19) 

We seek for a control v(x, t) satisfying (17) and such that the corresponding solution 
of (16) under the boundary conditions (18) and initial conditions (19) satisfies the 
zero terminal conditions w(x, T) = Wt(x, T) = ° at some finite (unspecified) instant 
T. Let us introduce the eigenvalue problem related to our initial-boundary-value 
problem 

A'Pi = -Ai'Pi, X E 0; M'Pi = 0, x E r (20) 

('Pi,'Pk) = in 'Pi(X)'Pk(X)dx = Oik. 

Here, Oik is the Kronecker delta. Under well-known conditions, the eigenvalue prob­
lem (20) has a discrete denumerable spectrum of nonnegative eigenvalues which can 
be numbered in non-decreasing order: AJ ::; A2 S ... , Ai -} 00, and the corresponding 
eigenfunctions 'Pk(X) form an orthonormal system complete in O. Using the Fourier 
method, we sef'k VJ and v as the serif'S 

w(x,t) = Lqi(i)'Pi(X), v(x,t) = LUi(i)'Pi(X). (21 ) 

Summation over i is performed from 1 to 00. \Ve assume that A} > 0; the case 
Al = 0 was considered in [3]. Substituting (21) into (16), (19) and using (20), we 

obtain for qi, Ui equations (11) with Wi = A~/2. We impose the constraints (12) on 
Ui, where u? are to be chosen later, and denote 

<I>i=max['Pi(x)[, i=I,2, .... 
xE!1 

(22) 

To ensure the control constraint (17), it is sufficient, on the strength of (21) and 
(22), to require: 

(23) 



www.manaraa.com

50 

We choose the control Ui for each subsystem (11) according to (13) and take 

U? = XPi, i = 1,2, ... , x > 0 (24) 

where x is a constant and Pi is defined in (15). Substituting (24) into (15) and (14) 
and taking into account that Wi 2': WI, we obtain the upper estimate on the control 

time 
(25) 

It remains to choose the constant x so that the constraint (17) holds. Substituting 
(24) into (23), we obtain 

(26) 

where Pi and <Pi are specified in (15) and (22), respectively. As follows from (15), if 
the following two series converge 

(27) 

then the series (26) converges too. 
Let us summarize the obtained results. Suppose the Fourier coefficients q?, q} 

for the initial functions Wo, WtO in (19) are such that the both series in (27) converge. 
Then the constants x and u? can be taken according to (26) and (24). The control v 
defined by (21) where Ui are given by (13) satisfies the constraint (17) and brings the 
system (16) from the given initial state (19) to the zero terminal state in finite time 
T which is estimated from above by (25). The sufficient controllability conditions 
(27) can be reduced [3] to simple differentiability conditions imposed on the initial 
functions (19). 

For example, in the case of a string (m = 1, A = ~, n = 1), these conditions are 
Wo E C3 , WtO E C2 for both Dirichlet and Neumann boundary conditions. For an 
elastic beam (m = 2, A = _~2, n = 1), the sufficient controllability conditions are 
Wo E C4 , WtO E C2 for various boundary conditions at the ends of the beam. 

4. Application of Kalman's Method 

We consider now a general linear control system 

:i; = A(t)x + B(t)u + j(t) (28) 

under mixed constraints imposed on the state x E Rn and control u E Rm 

ICi(t)x(t) + Di(t)u(t)1 ::; 1, i = 1, ... , t. (29) 

Here, A, B, j, Gi, and Di are given n X n, n x m, n X 1, l x n, and l x m matrices, 
respectively. We seek for the control u(t) satisfying the constraints (29) and driving 
the system (28) from the given initial state at t = 0 to the zero terminal state in 
finite (non-fixed) time T: 

x(o) = xO, x(T) = O. (30) 
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Denote by <f>(t) the fundamental matrix of the system (28): 

~ = A(t)<f>, <p(0) = E. (31) 

Here, E is the n X n unit matrix. The solution of the system (28) under the initial 
condition (30) is 

(32) 

Inserting (32) into the terminal condition (30), we obtain 

faT <f>-l(t)B(t)u(t)dt = x*, x' = -xO _faT <f>-l(t)f(t)dt (33) 

Kalman [2] proposed to seek the control in the absence of constraints (29) in the 
form 

u(t) = QT(t)c, Q(t) = <P-l(t)B(t), (34) 

where c is a constant n-vector, and the superscript T denotes the transpose. Sub­
stituting (34) into (33), we obtain the equation for c 

R(T)c=x*, R(t) = lQ(T)QT(T)dT. (35) 

Here, R(t) is a symmetric nonnegative definite matrix for t 2 O. We assume that 
R(t) is positive definite for t 2 O. This condition implies that the linear system 
(28) is controllable. In this case we have c = R-l(T)x*, and our control u(t) is 
completely defined by (34) for any T. 

Let us extend this approach to the case of the constraints (29) by choosing the 
appropriate T. We substitute the control u from (34) into (32) and then insert both 
x and u into (29). We obtain 

Ir(t)c + (Ji(t)1 :S 1, c = R-l(T)x*, i = 1, ... , l 

Fi(t) = Ci(t)<f>(t)R(t) + Di(t)QT(t), 

(Ji(t) = Ci(t) [<f>(t)XO + l <f>-l(T)f(T)dT] 

(36) 

Estimating the left-hand sides of the inequalities in (36) where x* is given by 
(33), one can deduce sufficient controllability conditions imposed on the time T and 
initial state XO under which the control (34) satisfies the imposed constraints (29). 
This approach was implemented in [4-6]. 

5. System of Oscillators 

Let us consider the system of oscillators similar to (J 1) but controlled by one 
scalar bounded control: 

(37) 
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This system is a model for n pendulums (or elastic oscillators moving horizontally) 
attached to a trolley which can move horizontally with a bounded acceleration u 

(see Fig. 3). 
u 

Figure 3. System of pendulums. 

We assume that all Wi in (37) are different; otherwise the system is not controllable. 
Let 

Wo = ° < WI < W2 < ... < Wn , n = min (Wi+l - Wi) > 0. 
O<i<n-l 

The control bringing the system (37) to the state of rest (qi(T) = qi(T) = 0, Z = 
1, ... , n) can be found by the approach of Section 4 and is given [4] by 

n 

u(t) = 2]ai COS(Wit) + bi sin(wit)] (38) 
i=1 

where the constants ai, bi are the components of the vector c depending on T and 
determined according to (35). The sufficient controllability condition can be [4] 
expressed as follows 

T 2: 2(uOrl(2nEo)I/2 + 2kSl-1 (39) 

Eo = ~ t[q;(O) + w;q;(O)], kn = [,5n(64n - ,55)/72]1/2 
t=:l 

It is quite natural that the required time T of the control increases, if the number 
of oscillators n and their initial energy Eo increase, and also if the control bound U O 

and the minimal difference of eigenfrequencies n decrease. For any T satisfying the 
inequality (39), the control u(t) is given in an explicit form (38). 

6. Electromechanical System 

Let us consider a system of two masses ml and m2 connected by an elastic spring 
of stiffness Co and driven by a DC electric motor whose driving force F applied to the 
mass ml is proportional to the current I in the circuit of the rotor. The motion of 
the system and the balance of the electric voltages in the rotor circuit are described 
by equations 

miil = co(6 - ~d + F, m2i2 = co(6 - 6) (40) 

F=klI, RI+k26=U, k1 >0, k2 >0. 
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Here, 6 and 6 are the coordinates of the masses ml and m2, respectively, kl and 
k2 are constant coefficients, R is the electric resistance, U is the controlling voltage, 
and the term with the inductance is neglected. Equations (40) hold also for other 
oscillatory systems with two degrees of freedom driven by an electric motor such 
as a pendulum attached to a moving trolley or a rotating beam when only the 
lowest eigenfrequency of elastic vibrations is taken into account. By introducing 
non-dimensional variables and parameters 

. . 

t' = wt, 
m16 +m26 

X2 = 
(ml+m2)lw' 

(41 ) 

2 cO(ml + m2) 
w = , 

mlm2 

where l is some constant length, we reduce equations (40) to the normalized form 

(42) 

Here, dots denote derivatives with respect to the non-dimensional time. The con­
straints imposed on the angular velocity of the rotor, electric voltage, and current in 
the rotor circuit of the motor can be presented as a system of inequalities imposed on 
the non-dimensional variables (41). A typical example of these constraints is shown 
in Fig. 4. Applying the approach of Section 4, we obtain the control u(t) satisfying 
the mixed constraints of Fig. 4 and driving the system (42) from any initial state 
Xi(O) = x? to the zero terminal state xi(T) = 0, i = 1,2, :3, 4 in finite time T. The 
required time T depending on the initial state is determined by a special numerical 
procedure. Typical numerical results are illustrated by Fig. 5. Here, the projec­
tions of the four-dimensional phase trajectory of the system (42) in the (Xl, :C2)­
and (X3, .T4)-planes are shown by the respective curves 1 and 2. The corresponding 
trajectory of the control and state variables bounded by the constraints is shown in 
Fig. 4. Here p = 0.4, IJ = 0..5. 

u ;" _ .... - ...... - .... -I 

I~:. ____ ~.~~~ __ -=~ ____ ~·· P~t~~ 
-C'. 

-1 ..•...........•........ ' 

Figure 4. Constraints for the electromechanical system. 
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Fig. S. Phase trajectories for the electromechanical system. 

7. Conclusion 

Two possible approaches are described which can be used for the control of 
oscillations in the presence of constraints imposed on the control and state variables. 
The control laws are obtained in an explicit form, satisfy all constraints, and drive 
the system from any initial state to the prescribed terminal state in finite time which 
is estimated from above, Sufficient controllability conditions in the presence of the 
imposed constraints are derived. 
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When during the operation of rotors supported in gas bearings their rotational 
velocity reaches a sufficiently high value, loss of steady-state stability occurs. 
This instability is caused by the loss of damping properties of the gas film, which 
leads to self-excited vibrations. These vibrations are the basic obstacle to a 
widespread application of gas bearings. The phenomenon of self-excited 
vibrations can be avoided by introducing an elastic supporting structure between 
the bearing bushes and the casing, characterized by properly selected stiffness 
and damping coefficients. In practice such a structure can have the form of an 
externally pressurized gas ring with a chamber feeding system, which ensures 
the required values of stiffness and damping coefficients (with regard to the 
stability). The investigations have been carried out by means of a numerical 
simulation method with the use of a mathematical model of the gas bearing, 
verified already many times. 

1. Introduction 

Gas bearings in comparison with oil bearings and rolling bearings exhibit 
numerous indisputable advantages: they operate without noise, they have a low 
coefficient of friction, they do not generate heat and are not subjected to wear. 
These advantages of gas bearings are due to the fact that the surfaces of the 
journal and bush are separated by a gas (mainly air) layer characterized by a very 
low (when compared with oil) viscosity. Gas bearings retain their advantages at 
high rotational velocities which exceed significantly the maximum rotational 
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velocities admissible for oil bearings and rolling bearings. 
The main disadvantage of gas bearings, which prevents their widespread 

applications, are the self-excited vibrations occurring when a sufficiently high 
rotational velocity is achieved. The phenomenon of self-excited vibrations is 
manifested by the fact that, at a critical value of the rotational velocity, the 
steady-state stability is lost and the bearing journal begins to move along a 
trajectory whose radius increases until the journal reaches a stable boundary 
cycle. When the boundary rotational velocity is exceeded even by a few per cent, 
the radius of the boundary cycle is bigger than the radial clearance of the 
bearing, and thus the phenomenon of self-excited vibrations leads rapidly to 
journal-bush contact and, as a result, to the destruction of the bearing. 

Czolczynski's numerical experiments [Czolczynski 1994a,b,c] have shown 
that the introduction of an isotropic system of linear springs and viscous dampers 
between the bearing bushes and the casing leads to a limitation of the range of 
rotational velocities at which self-excited vibrations occur . The main outcome of 
his work was to demonstrate that a proper selection of the values of stiffness and 
damping coefficients of the elastic bush support leads to a vanishing of the 
unstable regions, that is, to an elimination of the phenomenon of self-excited 
vibrations. Further investigations carried out by Czolczynski and Marynowski 
have provided data on the ranges of stiffness and damping coefficients, which 
make it possible to avoid the loss of the steady-state stability of symmetrical 
rotors supported in self-acting bearings [Czolczynski and Marynowski 1996a] 
and in externally pressurized bearings [Czolczynski and Marynowski 1996b]. 
The object of their considerations was a symmetrical rigid rotor supported in two 
gas bearings with flexibly mounted bushes. As the practical design of the elastic 
support an externally pressurized air ring supporting the bearing bush with a 
chamber feeding system is proposed, which stiffness and damping coefficients 
are presented in this paper. To compute coefficient values an original method 
described in detail in [Czolczynski 1996] has been used. 

2. Gas Bearings 

Gas bearings have been used to support rotors since the early 1960s. They have 
been designed for such applications as gyros, supports for magnetic heads in hard 
discs of computers, dental drills, or grinding machines. Though they have, as 
described above, many advantages in comparison with oil bearings or rolling 
bearings, gas bearings have two main disadvantages: their load capacity is 
comparatively small, but the major problem in gas bearings application is the 
phenomenon of self-excited vibrations. This phenomenon is the reason of their 
low stability. 

Because of the self-excited vibration, the rotor supported in gas bearings is 
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stable only when the rotational velocity is lower than a certain stability threshold, 
after which the amplitude of self-excited vibrations exceeds quickly the maximum 
value determined by the bearing clearance and shaft-bush eccentricity. This leads 
to journal-bush contact and to the destruction of both the rotor and the bearings. 

Figure 1 shows the typical gas journal bearing, which consists of two parts: 
1 is the bearing bush, and 2 - the rotating journal. 3 denotes the air gap between 
the bush and the journal. The average thickness of this gap (radial clearance of 
the bearing) is about 20-60 micrometers. The gas bearing may be selfactig or 
externally pressurized. In Figure 1, 4 denotes the feeding system which consists 
of 16 feedholes, located in two rows. The radius of each feedhole varies from 
0.15 to 1 milimeter. Through these feedholes the air is transported into the 
bearing gap from the compressor. The pressure of the air from the compressor 
is about 0.4-0.7 Mpa. Other bearings have a chamber feeding system in which 
the air from the compressor goes first to a chamber of comparatively big volume, 
and then from this chamber it flows through the feedhole into the bearing gap. 
The mathematical model of such bearing consists of the Reynolds equation 
describing the pressure distribution in the bearing gap 

(1) 
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(P - pressure, H - bearing gap, A - velocity, ~, e -coordinates, 't - time) and the 
equations describing the mass flow through the feeding system. This model is 
described in details in [Czolczynski el aI, 1996], and was the basis of calculations 
of the stiffness and damping coefficients by means of the method described in 
[Czolczynski, 1996], In this method the coefficients are calculated from the 
dynamical response (force) of the bearing on the kinematically forced harmonical 
motion of the journal. In the described below results of the numerical 
experiments, the bearings (and the air rings) were represented by sets of the 
stiffness and damping coefficients. 

Figure 2 shows the static characteristics of three different bearings: self­
acting, externally pressurized with a direct feeding system and externally 
pressurized with a chamber feeding system. In this Figure we can see the relative 
eccentricity ratio E between the journal and the casing, and the angle es between 
the direction of the journal displacement and the direction in which the loading 
force acts. On the horizontal axis is the dimensionless rotational velocity of the 
rotor A. 

From this figure it follows that at the same loading the eccentricity is the 
biggest and the most strongly dependent on A in the self-acting bearing. The 
bearing with a chamber feeding system has the biggest load capacity so its 
eccentricity ratio is the smallest and hardly depends on A. This means that this 
bearing is almost gas static. 
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3. Rotor Stability - Rigidly Mounted Bushes 

59 

Figure 3 shows the comparison between the stability thresholds for the selected 
value of the load capacity Fz = 1.5 and various supply pressures. As can be 
easily seen, the thresholds for the systems with externally pressurized bearings 
are located above the threshold for the system with self-acting bearings. The 
increasing of the supply pressure from 4 to 7 (Po=7 is the maximum value from 
the practical point of view) does not cause any significant increase of the stability 
threshold. The most important fact is that the region of self-excited vibrations is 
unlimited above, so there is no possibility to operate above this region. 
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4. Rotor Stability - Flexibly Mounted Bushes 

The situation changes when we introduce an elastic support, consisting of the 
linear springs Kp and the viscous dampers Cp, between the journal bushes and the 
casing (Figure 4). Figure 5a shows a sample of the stability thresholds of 
cylindrical vibrations of the rotor with flexibly mounted bushes for three selected 
values of the stiffness coefficient Kp' and various values of the damping 
coefficient Cpo As can be seen, for each stiffness coefficient K pthe unstable 
regions in which self-excited vibrations appear have a limited size unlike in the 
case of the rotor with rigidly mounted bushes. For a small (0.5) and for a big 
(3.5) values of Kp , the unstable regions exist for any value of the damping 
coefficient Cp and, in order to operate above the unstable regions, the system has 
to pass through these dangerous regions. This is not possible because, if the 
rotational velocity of the rotor is only a few percent bigger than the critical one, 
the journals hit the bearing bushes, which leads to the destruction damage. 

For a properly chosen value of Kp, for example Kp = 2, the main unstable 
region is divided into two sub-regions, bounded at points A and C and the second 
(upper) unstable region ends at the point B. This means that, when Cp is equal for 
example to 0.6 no self-excited vibrations appear during the system operation for 
any value of the rotational velocity A. Figure 5b shows the ends of unstable 
regions for various values of the stiffness and damping coefficient of the elastic 
support. As we see, these points derive the so called "always stable" loop. When 
the values Cp and Kp are from the inside of this loop, the static equilibrium 
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position of the rotor will always be stable, so no selfexcited vibrations will 
appear. 

5. Air Ring 

The introduction of the elastic support between the bushes and the casing allows 
us to eliminate self excited vibrations from the numerical experiment of the 
rotor operation, but it is difficult to realize it in prctice as a system of massless 
linear springs and viscous dampers. What is proposed here is the air ring with the 
chamber feeding system, which is shown in Figure 6 (l-chamber, 2-casing, 3-
movable bush, 4-rotor, 5-bearing gap, 6-air ring). A mathematical model of such 
a bearing is the same as the model of the bearing with the chamber feeding 
system. 

Figure 7 compares the main stiffness (Kll) and damping (Cll) coefficients of 
the air ring with the direct and with the chamber feeding system. As we can see, 
the stiffness coefficient of the chamber ring is smaller, and the damping 
coefficient is bigger than in the ring with the direct feeding system. This means 
that it is more easy to design a ring with a stiffness and damping coefficient from 
the inside of the always stable loop for the chamber feeding system. For 
sufficiently small values of the frequency of vibrations v, the damping coefficient 
of the chamber ring is negative. This means that for these frequencies the system 
might undergo the phenomenon of air-hammer, which is another for}Il of self­
excited vibrations. It appeared from our investigations, that these frequencies are 
lower than the natural frequencies of the rotor investigated. 

A parameter of the feeding system which influences the coefficients Cll and 
Kll is the radius rd of the orifice through which the air enters the chamber (Figure 
8). For rd = r02 = 1.0 X 10-3 m, the ring has the same damping and stiffness 
coefficients as the ring with the direct feeding system and r 02 = 1. 0 X 10-3 m. 
A decrease in the value of rd causes a decrease in the value of the damping 
coefficient, especially in the region of the air hammer, but outside of this region 
the changes of Cll are very small. What is important is that the decrease in the 
radius rd brings causes a significant (advantageous!) decrease of the stiffness 
coefficient K\l and "introduces" us into the "always stable" loop. 

6. Example 

As an example of the influence of the air ring coefficients on the stability of the 
rotor, the stability map of the rotor with the selfacting bearings supported in 
viscous dampers and linear springs for two selected values of the stiffness 
coefficient Kp=5 and 16, and for various values of the damping coefficient Cp is 
shown (Figure 9). In this example, parameters of the rotor have been selected in 
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such a way that the system has the same eigenvalues of cylindrical and conical 
modes. As may be seen, for big value of Kp the unstable region exists for any 
damping coefficient Cp - and this situation repeats for the rotor with air rings with 
big orifices (practically with the direct feeding system). 

As may be seen from Figure 9, for Kp= 16 and Cp =0.9 at A",5 the system 
undergoes a Hopf bifurcation, and at A", 14 - a reversed Hopf bifurcation. We 
may eliminate self-excited vibrations changing the radius of the orifice from 
rd= 1.0x 10.3 m to rd=0.15 X 10-3 m. After this change, Kp diminishes from 16 to 
5, and Cp from 0.9 to 0.75. For such values of Kp and Cp' there are no unstable 
regions on the stability map. 

Figure 10 shows amplitudes of vibrations of the journal (xc - solid lines) and 
of the bush (xp - broken lines) in the plane in which the force Fz acts as functions 
of the rotational velocity A. As can seen, when rd = 1.0 X 10-3 m (Figure lOa), in 
the range 7,5 < A < 12 the amplitude of self-excited vibrations of the journal 
exceeds the value which is permitted by the radial clearance of the bearing and 
the value of the journal-bush eccentricity ratio. When rd =0.15 X 10-3 m (Figure 
lOb), only the unbalanced vibrations and the small resonance of the bush but no 
self-excited vibrations can be observed. 
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7. Conclusions 
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We may avoid self excited vibrations of the rotor supported in gas journal 
bearings by introducing an air ring with chamber feeding system between the 
bearing bushes and the casing. The air hammer phenomenon does not appear in 
the range of the natural frequencies of the system. 
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1. Introduction 

The aim of the paper is to show the use of the LAGRANGIAN approach to elec­
tromechanical driving systems also containing flexible mechanical substructures. 
This approach is based on the dynamics of Hybrid Multibody Systems (HMBS) 
and Discrete Electromechanical Systems (EMS), respectively. The procedure will 
be demonstrated by an example of a planar motor with an elastic deformable slide, 
using the software tool alaska. 

The planar motor consists of a stator and an aerostatical supported slide. It works 
as a hybrid stepper drive where the stator is passively. The slide is a plate (circular 
or rectangular) which is assumed to be an elastic deformable body. 
The dynamics of Multibody Systems with flexible substructures can be regarded 
as a point dynamics in a Riemannian space vn using a (global) RITz-approach 
to the displacement field of the elastic deformation. An elastic deformable body 
is regarded as a manifold endowed with a curvilinear coordinate system. The 
equations of motion are LAGRANGE's equations of second kind. 
For modelling of the elastic deformable slide eigenfunctions are used as the shape­
functions of the plates. The so-called shape-numbers in metric coefficients, Chris­
toffel-symbols and generalized forces of the LAGRANGE'S equations of motion are 
calculated using symbolic computation. 

2. Hybrid Multibody Systems 

Using well-known concepts and definitions from continuum mechanics the tran­
sition from a reference configuration Q3* to the actual configuration Q3t can be 
described by the displacement field 

where 

{~i}: affine frame fixed on Q3*, 

{gd : local frame on Q3*. 
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(1) 

(2) 
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Figure 1: Kinematics of an elastic deformable body 

The local frames {gil and {Q)i} on IB*, IBt, respectively, are defined by 

where 

Q)i(P) := 8d):(~) + u(~, t)), 

: motion-tensor of elastic deformation, 
: covariant derivative in IB*, 
: Christoffel-symbols of second kind in IB*. 

(3) 

(4) 

Then, the metrices on IB* ,IBt respectively, are defined by gij := gi . gj , Gij .­

Q)i . Q)j == gij + eij . Gij denotes the CAUCHy-GREEN's metric tensor on IBt and 
eij := 2V'(iuj) + V'iUrV'jUr is the GREEN'S strain tensor. In general, gij,rt and 
eij have to be computed in curvilinear coordinates. 

The kinetics of an elastic deformable body is based on the principle of virtual 
work in LAGRANGE'S form. Starting from the kinetic energy and generalized forces 
(inclusive the elastic potential U(x)) and using the RITz-approach 

the LAGRANGE'S equations of motion of an elastic body explicitly read: 

gabil + gavxV + rabcllil + 2rabvl/±v 

gvbil + gvp.xp. + r vbc1lqC + 2r vbp.qb±p. 

(5) 

(6) 

qa denote the generalized rigid body coordinates and XV denote the generalized 
coordinates of the elastic deformations. (qa, XV) == ("I P) = "1 denotes the represent­
ing point of the elastic body. CPv(~) are shape-functions which have to satisfy the 
kinematic constraints imposed on the boundary of the elastic body. 
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The metric coefficients gab, gall, gJ.L'" the Christoffel-symbols of first kind r abc, r ab", 
r "be, r "bJ.L and the generalized forces Qa, Q" in the LAGRANGE'S equation (6) have 
to be generated using kinematic basic functions [1] algebraically due to the RITZ­

approach presented in [2]. 

In order to describe geometric constraints between elastic deformable bodies it 
is necessary to introduce local body-fixed frames in 'E* and in 'Et, respectively. 
In general, geometric, kinematic and dynamic constraints between two elastic de­
formable bodies in HMBS can be written, as 

(7) 

(8) 

and 

(9) 

respectively. These equations will be generated in a derivative-free manner for 
several ordinary kinematic joints (spherical, universal, cylindrical, revolute and 
translational joints) to get a complete set of model equations for a HMBS. 

3. Discrete Electromechanical Systems 

Electromechanical Systems (EMS) are physical structures characterized by inter­
actions between electromagnetic fields and inertial bodies [3], [4]. The interaction 
can be expressed by constitutive equations (generaliY.!(d force laws) describing the 
coupling of Maxwell's theory and mechanics. Constitutive equations describing 
the coupling between the dynamics of Multibody Systems (MBS) with a finite 
degree of freedom and Kirchhoff's theory (as quasi stationary approximation of 
Maxwell's theory) define discrete EMS. A mathematical description following the 
classical analytical mechanics and completed by some basic concepts and methods 
of graph theory to characterize topological properties of electrical networks plays ° 

a fundamental role for a unified modelling and simulation of discrete EMS. 

The general motion equations of an EMS read 

gJ.L"ij" + fh,gJ.L"i/q" + (2f J.LbO + SJ.Lb)qb + r J.LOO + sJ.LO = 0, 
gl<AijA + r I<AllqAqll - ~8I<g"wq"qW + (2r I<bO + Sl<b)qb + r 1<00 + 81<0 = 0, (10) 

where 

= tJp.8v w lJ.L" = Ai J.LAj "Lij , 
"'[mu o u o , + (1 - S )(1 - 8,)eijno no,] ~ k k 11< k 11\ I< 1\ k k 11< k J 1\ 
k 

= iJ",fJ;..T = (11) 

denote the generalized inductivities and masses, respectively. 
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Using the topology of the representing electrical network and the constitutive 
equations, the LAGRANGE'S equations (10) become 

(12) 

These equations will be generated automatically by the simulation tool alaska. 

Under the following assumptions 

AI: quasistatic approximation of the Maxwell-Theory 
A2: no hysteresis 
A3: no saturation 
A4: electrically linear constitutive equations 

the following steps for getting inductivities have to be carried out: 

1. 
2. 

3. 

4. W,',. := J '¢p.dqP. 

= W,',.(q,x) 
'¢p. := AtWi 

Fundamental loop matrix (Topology) 
Inductivities depending on 
mechanical coordinates 
Permanent magnetic flux (in a coil 
generated flux by permanent magnets) 

Magneto-mechanical copotential (Coenergy) 

linkage magnetic flux 
in the fundamental loop f..L 

linkage magnetic flux in branch i 

'" W,',. = ~Lij(X)JiJj + Wio(X)Ji = W,',.(I,x) 

(Maxwell: w:n = J SJ dQ3 = J Hi dBi = ~JlijHiHj coenergy density) 
Bi := JlijHj 

5 L ·- 82 W' W .- 8 W' I . ij .- 81'81' m' io·- 8l' m 1=0 

(lp.v == AtAtLii := 8p.8vW,',.(q, x)) 
--t 

6. '¢i = n<Pi n coil windings, <Pi:= J Q3 d f, Q3 : div Q3 = 0, rot Q3 = j 
Fi 
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(Planar Motor) with an Elastic Deformable Slide 

Modelling of Integrated Electromechanical Multi-Coordinate Drive 

69 

For the research project" Modelling, simulation and validation of integrated elec­
tromechanical Multi-Coordiante Drives" supported by the DFG (German Research 
Council), several electromechanical simulation models of linear and planar drives 
are developed. An detailed description of these models can be found in [5]. These 
models include beside the mechanical and electrical substructure also the mea­
surement and control systems, and the slide bearing (aerostatical air bearing). 
Using such drives a high positioning accuracy should be achieved. Therefore, the 
dynamics of the slide during positioning movements is an essential investigation 
subject. Elastic slide deformations are possibly one of the reasons for undesired 
oscillations. The used simulation tool allows the modelling of hybrid multibody 
systems by various ways. In this case the global RITz-approach is used. The driv­
ing system works as a hybrid stepping one. The driving principle is based on the 
superposition of magnetic flux caused by permanent magnets and coils. Hence, 
the magnetic flux is increasing or decreasing, respectively. 

,>etm." .. nt magneto 
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Figure 2: Structure of a driving unit of a hybrid stepper drive 

The structure of one driving unit is shown in Figure 2. For periodical increasing 
and decreasing of the magnetic flux the current direction in the coils of part a 
and b must be changed periodical depending on the slide position. The simulation 
model of such a unit is shown in Figure 3. In various simulations the functional 
character of the model has been checked. 

Figure 3: Simulation model of a driving unit of a hybrid stepper drive 
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Figure 4: Geometrical parameters of the driving unit 

For modelling of linear and planar drives two or more of such units are placed one 
after the other and side by side on a slide. A main part of the electromechanical 
model is the description of the interactions between mechanical and electrical sub­
structure by means of so-called constitutive equations. These equations describe 
the behaviour of electrical components depending on mechanical coordinates. In 
this case these mechanical coordinates are the vertical and horizontal slide position 
over the stator. The interaction is described by the coil inductivities depending on 
the slide positions. The effects caused by permanent magnets are also described 
by coils with constant current. The constitutive equations and parameters are 
based on the electromechanical co energy W,'" in the magnet gap between slide and 
stator. The magnet gap co energy W,'" is a function of geometrical parameters of 
the driving system, shown in Figure 4 and the coil currents, respectively. 

The magnetic co energy can be expressed in the form 

(13) 

where Wi is the energy density in the magnet gap volume Vi. The inductivities Lij 

of the coils can be obtained like shown above. 

Modelling of an Elastic Deformable Slide 

For modelling of elastic deformable bodies by using the global RITz-approach 
suitable shape functions are required. These shape-functions must satisfy at least 
the geometrical boundary conditions. The slides are regarded as free plates. The 
eigenfunctions of free plates (circular or rectangular) can be used as suitable shape­
functions. To reflect the elastic behaviour appropriate eigenfunctions have to be 
selected. For circular plates with a free boundary, analytical given eigenfunctions 
can be used [6]: 

(14) 

is the differential equation of plate theory in polar coordinates. In the case of sym­
metric boundary conditions the solutions can be represented using the following 
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notations: 

(15) 

with 

(16) 

for circular plates without a hole. Using the boundary conditions for a completely 
free circular plate 

(17) 

the eigenfunctions can be expressed as 

(A+B) Zm,n(r,<p) = C+D cos(m<p) (18) 

with 

A Im(f3m,n) (,B~,n a2 + m2 + m(v - 1)), 

B = 1m+! (,Bm,n a)(,Bm,n a(v - 1))Jm(,Bm,n r)), 

C Jm(,Bm,n) (,B~,n a2 + m 2 + m(v - 1)), 

DIm+! (,Bm,n a)(,Bm,n a(v - 1))lm(,Bm,n r)). 

1m, Jm are BESSEL-functions, a denotes the plate radius and the ,Bm,n are solutions 
of the characteristic equation, respectively. 

For rectangular plates various combinations of boundary conditions are possible. 
Several solutions for simple boundary conditions can be found in [7]. For com­
pletely free plates, functions for mode shapes of the type 

Z(x, y) = X(x)Y(y) 

with 

if m, n even and 

cosh(km) cos(¥) + cos(km) cosh(¥) 

J(cosh(km)2 + cOS(km)2)) 

cosh(kn) cos(~) + cos(kn) cosh(~) 

J(cosh(kn}2 + cos(kn)2)) 

= sinh(km) sin( ¥) + sin(km ) sinh( ¥) 

J(sinh(km)2 - sin(km )2) 

(19) 
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Figure 5: Some eigenmodes of a free rectangular plate 

sinh(kn } sin(¥) + sin(kn ) sinh(¥) 

J(sinh(kn )2 - sin(kn }2) 

if m, n odd can be used. a is the plate dimension in x-direction, b in y-direction. 
The km can be obtained as the roots of the equations 

tan(km } + tanh(km } = 0 if m even and 

tan(km } - tanh(km } 0 if m odd, 

kn respectively. Some eigenmodes of a free rectangular plate are shown in Figure 5. 

Results 

Four of the driving units described above are located on a slide. Two driving units 
move along the x- and two along the y-direction. The slide is assumed to be a 
square plate. Figure 6 shows the positions of the driving units. On the bottom 
of the slide single forces acts vertically to describe the aerostatical bearings. The 
values of the forces depend on the size of the air gap between stator and slide. 
Using selected shapes-functions various shape-numbers have to be calculated if 
taking into account elastic bodies. All of this numbers are integrals of functions 
of the shapes-functions: 

cf?VrlL. = P J <Pvr <PI'. dV and cf? svrrlL. = P J 8s<PvJJr <PlL. dV . (20) 
v v 

Such numerical integrations are extensively and should be done in a preprocessor. 
Therefore, a program in the programming language of MAPLEV was created, which 
computes the shape-functions for m, n-combinations and calculates the necessary 
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Figure 6: Driving unit positions on the slide 

integrals. Also the required stiffness matrix of the elastic body depending on 
the selected shapes-functions will be calculated by a MAPLEV program. After 
the integration of the equations of motion of the HMBS with the generalized 
elastic coordinates XV and the selected shapes-functions the elastic displacement 
u of certain selected points on the elastic body can be displayed, and the elastic 
deformation of the complete body can be shown as an animated plot using a special 
MAPLEV program. 
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Abstract 

We propose a new shipboard crane configuration for offioading cargo 
in open seas. We show that the "Maryland Rigging" crane of ship's con­
figuration, used in association with a friction control mechanism, provides 
a very effective method for reducing load pendulation caused by the mo­
tion of the crane in the roll direction. The effectiveness of the control 
technique is obtained by comparing the performances of the "Maryland 
Rigging" configuration with the standard "rider block tagline system", 
commonly used in crane ships. In most of the cases studied for which dif­
ferent sea conditions are considered, the "Maryland Rigging" reduces the 
root mean square swing of the load by an order of magnitude as compared 
to the current rider block configuration. 

1. Introduction 

There are many situations in which cranes must be operated on a moving plat­
form. One example is offioading ship's cargo in the open sea, using cranes that 
are mounted on another ship. When the sea is not calm. the crane ship rolls, 
pitches, heaves, etc., in response to the sea motion. Unlike a crane in a har­
bor, which is mounted on a fixed platform, the crane ship responds to the sea 
motion, imparting this motion to its load. It becomes imperative to develop mo­
tion control mechanisms to achieve safe, and effective offioading operations. The 
dynamics of the load is generally three dimensional and very complicated. How­
ever, most of the damage and problems are caused by load pendulation in the 
direction of the ship crane roll motion ([1], [2]). Current ship cranes have only 
crude pendulation control features that are effective in limited circumstances. 

A rough model of the dynamics of a rocking crane system is given by the 
nonlinear pendulum equation, 

X +sinx = F(t). (1) 

Here F(t) is a forcing signal due to the motion of the rocking platform, which is 
irregular but nonetheless has a strong periodic component. The fluctuations in 

75 
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Simple Crane Rider Block Tagline System 

Figure 1: Current rigging configurations. 

amplitude and frequency may be modeled as being random [3], [4], or chaotic. 
The pendulum experiences resonance when, for a certain period of time, the fre­
quency of the forcing signal is closed to the natural frequency of the pendulum. 
Even with a small forcing amplitude, the amplitude of the pendulum oscillations 
grows, but it generally does not grow indefinitely (even with a periodic forcing 
signal) because of the nonlinearity. For the crane system, one expects large 
pendulations to occur when the roll frequency is close to the natural frequency 
of the system, which is of the order of 0.1 Hz for a pendulation length of around 
30 meters. One can try to avoid large pendulations by dampening the system, 
or by adjusting the natural frequency of the system so that resonance does not 
occur. 

Typical crane configuration attempt to reduce the pendulation in the cargo 
with a Rider Block Tagline System (RBTS), as illustrated in Figure 1. Instead 
of being connected directly to the cargo, the hoist cable is threaded through the 
rider block and then connected to the cargo. The rider block is adjusted by the 
tagline and the liftline (not shown) so that the effective pendulation length of 
the cargo, and consequently its natural frequency, is changed. 

The RBTS can be effective if the roll motion of the ship is regular. Hqwever, 
wave motion, and the ship's response to it, may be broadband, hence resonance 
can occur for a variety of natural frequencies of the crane. In such cases, the 
pendulation of the cargo cannot be reduced simply by adjusting the position of 
the rider block. Another problem is that quick and precise implementation of 
a control strategy is not possible because it is difficult to adjust the rotational 
speed of a cable winch quickly and smoothly. Observations have shown that 
once the pendulation is built up in the heavy rigging gears, it is very difficult 
to dissipate energy under current rigging and control designs. 

In this paper, we present an alternative strategy of pendulation control, 
which uses an adjustable frictional force to dissipate energy in the crane system. 
This strategy is realized by a new rigging configuration as shown in Figure 3. 
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This "Maryland Rigging" includes a pulley-brake assembly in addition to the 
usual components. We insist that any modification of the current cranes should 
meet the following requirements: 

• minimum change from the current configuration.; 

• low cost; 

• better control of load pendulation. 

The pulley-brake assembly is intended to be a separate component, so that 
it can be added to the crane system easily. The rest of the rigging system is 
almost unchanged. The purpose of the pulley-brake assembly is to dampen 
the load pendulation. This alone is a major advantage over existing riggings, 
which do not offer any significant damping. Furthermore, the magnitude of 
the breaking can be adjusted easily. The pulley-brake assembly thus offers a 
practical mechanism for the implementation of a variety of control strategies, 
with the level of friction as a control parameter. The simplest strategy is to 
apply the brake uniformly, meaning constant friction. In this case the frictional 
force is assumed to act in the opposite direction of the rotation of the pulley 
with constant magnitude (independent of the speed of rotation). 

A previous work [5] studied the performance of the "Maryland Rigging" 
configuration using, as input data for the roll oscillations of the ship crane, 
sinusoidal and chaotic signals. In that work, a constant friction force was applied 
in order to reduce the load pendulation. Given continuity to that work, we now 
consider a realistic roll input data measured in a real crane ship [1], [2] and the 
friction forcing, introduced to dampen load pendulation, depends not only on 
the direction of the rotation of the pulley (dry friction force) but also on the 
magnitude of the rotational speed (viscous friction force) of the pulley. 

In Section 2, we show the measured series of data points that corresponds 
to the roll oscillation of a ship crane. In Section 3, we describe the models for 
the "Maryland Rigging" and the rider block configurations. In Section 4, we 
show how the "Maryland Rigging" with control, a combined dry-viscous friction 
force, proves to be very robust to different sea conditions, preventing large load 
pendulations. In Section 5, the performance of the "Maryland" configuration is 
compared to the standard rider block configuration, by analyzing the root mean 
square of the horizontal displacement of the load. 

2. Roll Oscillation 

The crane ships are considered to be under the action of sea oscillations which 
impart to the ship instabilities in the roll direction. These instabilities are 
measured in a real crane ship. 

So, the measured data sets of the roll oscillation, f3(t), (in degrees) collected 
from a crane ship, can be seen in Figures 2(A-E). Over 8000 points are collected 
within a period of 4000 seconds. Each measurement is carried out at different 
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Figure 2: Experimental data (3(t) for the roll oscillation in degrees. 

time but at the same place. For our simulations, we use intervals of time of 
1000 seconds. Thus, for reasons that will be clear later, we pick 2000 consecutive 
points over these 8000 collected ones, such that the first point (that by definition 
represents the roll oscillation for the time t=O) in this arranged time series is 
close to zero. So, {3(t = 0) ~O .. 

With these discrete data sets, we numerically obtain, by third-order inter­
polation, smooth functions for {3(t), /3(t), ~(t) that are the evolution of the roll 
oscillation, the first derivative of the roll, and the second derivative of the roll, 
all quantities that are needed in our simulations. 

The sea conditions, available for our simulations, are the ones showed in Fig­
ure 2. However, more general situations, where we would find a more aggressive, 
or calm sea than the ones measured [1], [2], would make our results even more 
tangible. So, we rescale the functions {3(t), /3(t), ~(t), by a factor A, in order to 
change the amplitude of the oscillations but keeping the time scale invariance: 

{3'(t) -7 A{3(t), ~'(t) -7 A/3(t), ~/(t) -7 A~(t), (2) 

where 0 < A ::; 2.5. 

3. Rider Block and "Maryland Rigging" Configurations 

We introduce the standard rider block tagline system in Figure 3, where we see 
that the hoist cable is holded by a tagline at the rider block. 

Considering the tagline cable and the hoist cable, from the upper part of 
the boom to the rider block, as a rigid body (what is very reasonable to assume 
once the considered sea conditions are not so drastic), the equation of motion 
for the crane of Figure 3 is 
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+ ~2(L5 cos({3 + 8 + 9) + L3 cos(t1 + 9) + Lll cos(t1 + 9 - t10)) (3) 

- gsin9). 

In Equation (3), t1 [(3 represents t1(t)] is the roll oscillation of the ship shown in 
Figure 2, .80=45 deg, 8=15 deg, 9 is the angle between the horizontal and the 
load cable I, and L1. L3, and L5 are indicated in Figure 3. 

The "Maryland Rigging" configuration is schematically shown in Figure 4. 
There is a pulley that moves along the cables Ll and L2 whose ends are attached 
to the points B and C of the boom. The load is sustained by a cable I connected 
to the pulley. The control strategy is to apply a break at the pulley in order to 
dampen load pendulation. 

The equations of motion for the "Maryland Rigging" configuration are 

mii~ = T2 cos a2 - Tl cos al + T3 sin 0 

ml1i~ = Tl sinal + T2 sina2 - T3 cosO - mig 

Tl - T2 = f(t) 

Iii = -i~ cos 9 - y~ sin 9 - 9 sin () 

T3 = m2(-i~sinO + y~cosO + gcosO + 102 ), 

(4) 

where f(t) is a combined dry-viscous friction force that models the action of a 
break over the pulley, given by 
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(5) 

In Equation (4), T1, T2, T3 are the tensions along cables L1, L2, and L3, 
respectively. The mass of the pulley is m1 and the mass of the load is m2. They 
are assumed to be 0.01 and 1, respectively. 

In Equation (5), 111 ~d 112 are the dry and viscous friction coe~cient~ re­
spectively, and L1 and L2 are the cable velocities. The difference L1 - L2 is 
the rotational speed of the pulley with respect to the cable, and while the dry 
friction term depends only on the direction of the pulley velocity, the viscous 
friction term depends not only on the direction but also on the magnitude of 
the rotational speed of the pulley. 

Our control strategy consists in finding the best range of values for 111 and 
112 for which the load pendulation is minimum. A large variety of different 
friction laws from Equation (5) were tried, considering instead of £1, £2 different 
accessible parameters such as B, 9, ~, ~, (3, /3. However, no better performance 
than Equation (5) was found. 

Equations (4) have two degrees offreedom: one given by the pulley position 
x" and Y" (see 6), and the other given by the angle B from which is obtained 
the cargo position (Xq, Yq) by doing (xq,Yq)=(x" -lcosB, Y" -lsinB). 

The rider block as well as the "Maryland Rigging" parameters were chosen 
according to a prototype crane ship. So, the boom length, L3 + L4 , is estimated 
to be the order of 42 m and the length L5, from the gravitational center of the 
ship (the base for the crane) to the crane pedal, is to be the order of 14 m. Note 
that both configurations are supposed to have similar size and length scales. 

For both configurations, we choose a very special value for L1 +L2 in order 
to let the cargo position to be 2 meters above the sea level, the maximum cable 
length to be expected when offioading the cargo ship, and also the configuration 
that would give the largest possible load pendulation. 

For t=O, both configurations are at the rest position, what means that at t=O, 
B(t = 0)=0 and 0=0 (for both configurations), and i", y,,=O (for the "Maryland" 
configuration). The position of the pulley for the rest position is calculated by 
assuming that the angle (3(t = 0) + (30 + 0=f30 + o. Thus, (3(t = 0) must be 
equal to zero. That is the reason why we have arranged the data for the roll 
oscillation to be such that (3(t = 0) ~O (see Figure 2). 

Our simulations are performed for an interval of time of 1000 seconds, for 
which the first 300 seconds are discarded in our analysis. Such transient time 
is considered because it takes some time to transfer momenta from the rolling 
ship to the load. 

4. The "Maryland Rigging" Performance with Control 

We obtain a series of profile curves relating the dependence of the root mean 
square (RMS) for the horizontal displacement of the cargo position (Xq) on 
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Figure 4: "Maryland Rigging" configuration. 

the friction coefficients '1/1 and '1/2, for different rescaling factors A. We show 
in Figures 5(A-B) only three curves (for '1/1 = 0.00,0.25,0.50) that show the 
RMS horizontal displacement in respect to '1/2, for the rescaling factors A=l.O 
and A = 2.0. Figure 5 represents well the conclusions derived from an intense 
analysis of a large number of profile curves. 

From Figure 5, we see that the use of a single dry or viscous friction force 
works well for damped oscillations. If '1/1=0.00 (viscous friction), we see that a 
small load pendulation is obtained for '1/2=40.0. If '1/2=0.0 (dry friction), good 
results are obtained for '1/1 =0.25. However, for a practical application of the 
kind of control by equations as given by (5), it is fundamental that good results 
are obtained not only for some values of the friction coefficient, but rather for 
a range of values giving always good results independent of the sea conditions. 
We seek a control strategy that is robust for every sea condition, even when a 
large variation on the friction coefficients is necessary. 

5. Comparison Between "Maryland Rigging" and Rider Block Con­
figuration 

To compare the performance of the "Maryland Rigging" with the standard rider 
block configuration, we choose '1/1 =0.25 and '1/2=10.0 (the black filled square in 
Figure 5A), a set of parameters for which we get nearly an optimal performance 
of the "Maryland Rigging" crane configuration. 

As we change the amplitude factor A, we show in Figures 6(A-E) that the 
RMS for the horizontal displacement of the load position for the "Maryland" 
configuration is an order of magnitude lower than the rider block configuration. 
Each curve in Figures 6(A-E) is obtained for one roll data series. So, Figures 
6(A-E) are obtained from the roll data shown in Figures 2(A-E), respectively. 
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Figure 5: Dependence of the RMS for the horizontal displacement of the load position on 
1/1 and 1/2 for A=l.O (A) and A=2.0 (B). 

Table 1: Ratio between the RMS displacement of rider block and the "Maryland 
Rigging" for the five considered roll data sets when A=1.0 and A=2.0. 

I data set I A=1.0 I A=2.0 I 
Figure 2A 5.38 5.02 
Figure 2B 11.26 14.93 
Figure 2C 10.84 8.99 
Figure 2D 3.20 2.61 
Figure 2E 8.28 10.67 

The ratios between the RMS displacement of rider block and the "Maryland 
Rigging" for the five considered roll data sets are shown in Table , for two 
values of A, A=1.0 and A=2.0. We see that the data set of Figures 2A and 2D 
makes the ratio not too high. Those data sets give a characteristic frequency 
not so high as the others. Thus, the "Maryland" configuration with control 
is more effective in dampening the load pendulations caused by rapid ship roll 
oscillations. 

6. Conclusions 

We have presented the new "Maryland Rigging" crane ship configuration. This 
configuration is envisioned to be easily implementable into the current crane 
ships, and it also provides ways of applying a simple friction control technique, 
in order to reduce load pendulation. 

The control of load pendulation is achieved by applying a combined dry-
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Figure 6: The "Maryland Rigging" and rider block RMS displacement with respect to the 
factor A. In Equation (5),111=0.25 and 712=10.0. 

viscous friction forcing, that provides a control technique which is robust for all 
sea conditions (considering only instabilities in the roll direction), even when 
there is a large variation of the friction coefficients. 

The performance of the "Maryland Rigging" configuration to dampen load 
pendulation, measured by the root mean square of the horizontal displacement 
of the load, is an order of magnitude better than the rider block configuration. 

In a recent work, in addition to the roll oscillation, the heave and the sway 
motions of the ship were introduced into the models presented in Sec. 3. These 
oscillations, also measured in a standard crane ships, change the position of 
the gravitational center of the ship in the horizontal direction (sway) and in 
the vertical direction (heave). The performance (RMS horizontal displacement) 
of .rider block configuration with roll, sway and heave motion is nearly the 
same as the one obtained by considering only the roll oscillation. However, 
the performance of the "Maryland Rigging", when the roll, heave and sway 
oscillations are introduced, are worse than the performance obtained considering 
only the roll oscillation. Actually, with those three motions being considered, 
both configurations give nearly the same performance for the root mean square 
of the cargo horizontal displacement. 

The reason for which the "Maryland Rigging" configuration, in presence 
of the three kinds of oscillations, presents a large load pendulation is because 
the load resonates with the sway oscillation. This resonance persists when the 
control is done by a law of the kind of Equation (5). 
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. and x'-axis along the line BC. We write x, and y' in terms of e as x' = ¥ cose, 
.jL(t)2_L2 

y' = 2 4 sin {. After changing the coordinates of the pulley into the rest frame, 
we have: xp = x, cos fJ - y' sin fJ + Xc and YP = x, sin fJ + y' cos fJ + Ye· 
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A CONSISTENT AND EFFECTIVE METHOD FOR NONLINEAR 
RANDOM OSCILLATIONS OF MDOF SYSTEMS 

GUO-KANG ER AND VAl PAN IU 
Faculty of Science and Technology 
University of Macao 
P.O. Box 3001, Macao 

Abstract. The difficulties in obtaining the probability solutions of nonlin­
ear random multi-degree-of-freedom (MDOF) systems are underlined. For 
the MDOF systems which are excited by white noise, a new method pro­
posed recently is applied and extended to obtain their approximate proba­
bility density function (PDF) solution. Numerical results are presented to 
validate the method for the highly nonlinear random MDOF systems. 

1. Introduction 

The random vibrations of nonlinear systems have attracted much atten­
tion in the past decades with no consistent and effective method pro­
posed for highly nonlinear MDOF systems. Even though the investigation 
on the probabilistic solutions of nonlinear random single-degree-of-freedom 
(SDOF) systems has attracted much attention for half a century there has 
until recently been no effective method suitable for highly nonlinear sys­
tems. 

The reason that random nonlinear MDOF systems troubled many re­
searchers in various areas for almost half a century was that it was generally 
difficult with any available method to obtain desirable approximate PDF so­
lutions of highly nonlinear random systems. For four- or higher-dimensional 
problems, there was even no method for reasonable approximate PDF so­
lutions, except the equivalent stochastic linearization method which is suit­
able for weakly nonlinear systems without multiplicative excitation, or the 
stochastic average method which is suitable for weakly damped systems 
with weak excitations. Most practical problems are described by MDOF 
systems with four or more degree of freedom. 

The literature on exact or approximate PDF solutions of nonlinear ran­
dom systems is vast. Various methods have been proposed in past decades: 
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equivalent stochastic linearization method [2], stochastic average method 
[11], Non Gaussian Hermite polynomial closure method [1], equivalent non­
linear system method [8], maximum entropy method [10], and multi-Gaussian 
closure method [3], etc. The methods are limited by one or more of the 
following: (1) They are suitable only for weakly nonlinear system with­
out multiplicative excitation, or weakly damped system with weak excita­
tions, e.g., equivalent stochastic linearization method, stochastic average 
method and so on. (2) The PDF model does not satisfy the probability 
theory, i.e., the method may lead to negative PDF value, e.g., Hermite 
polynomial closure method. (3) They are suitable only for two-dimensional 
problems, or nonlinear random vibrations of SDOF systems, e.g., all meth­
ods except equivalent stochastic linearization method, Hermite polynomial 
closure method and stochastic average method. (4) Complicated nonlin­
ear algebraic equations arise and it is difficult or practically impossible to 
formulate the algebraic equations because multi-dimensional integrals are 
needed, e.g., maximum entropy method for which multi-dimensional inte­
grals are needed, and multi-Gaussian closure method. 

A new method was reported recently for nonlinear random systems and 
applied to nonlinear random SDOF systems [4-6]. In this paper, the method 
is extended and applied to the PDF solution of nonlinear random vibrations 
of MDOF systems excited by white noise, or to the solution of the FPK 
equation in higher dimension without any limit on the degree of system 
nonlinearity. The nonlinear random vibration of a highly nonlinear two­
degree-of-freedom systems is analyzed with the proposed method. Numeri­
cal results are given and compared with obtainable exact PDF solutions to 
show the effectiveness of the method for nonlinear random MDOF systems. 

2. Statement of Problem 

Consider the following nonlinear random MDOF system: 

(1) 

where Y E ~nY,Yi,(i = 1,2, .. ·,ny), is the component of the state vec­
tor Y. HiO : ~ny X ~ny -> ~; the function type of HiO is polynomial; 
Hij(i = 1,2, .. ·,ny;j = 1,2, .. ·,m) are constant; Wj(t) is Gaussian white 
noise, E[Wj(t)Wk(t + T)] = Sik8(T), with 8(t) being Dirac's delta function 
and Sik being the cross-spectral density of Wi(t) and Wk(t). It is noted that 
Wj{t) may also be filtered white noise; in this case, more equations can be 
added to system (1). Without loss of generality, system (1) is analyzed in 
the following. 

Denoting Yi = X 2i- 1 ,Yi = X2i,hi-l = X2i,hi = -HiO,g2i-l,j = 
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0, 92i,j = Hij and 2ny = n x , we can express Eq. (1) in Ito's sense as 

d 
dtXi = fi(X) + 9ijWj , i = 1,2,· ··,nx;j = 1,2,···,~ (2) 

where X E Rnx, Xi is a component of the vector process X, Ii : Rnx ~ R. 
Generally, fi(X) is a nonlinear function of X. 

The system response X is a Markov vector and the probability density 
of the stationary Markov vector is governed by the following reduced FPK 
equation: 

(3) 

where x is the state vector, x E Rnx , p = p(x) and 

(4) 

The solutions to Eq. (3) are important for the statistical and reliability 
analysis of random systems. As the reliability analysis of random systems 
becomes more and more important and widely applied, much research work 
has been done on the approximate PDF solutions because exact solutions 
are very limited in practice. 

Suppose that the PDF p(x) of the stationary responses of the random 
system (2) satisfies the following relation: 

{ 
p(x) ~ 0 x E Rnx 

limxi-H.Xlp(x) = 0 i = 1,2,···, nx 

JiRnx p(x)dx = 1 

(5) 

which are usually fulfilled by the PDF of the responses of system (2). If an 

approximate PDF P (x; a) is used, where a E RNp and ai, (i = 1,2, ... , Np ), 

are parameters to be determined, and Np is the total number of the pa­
rameters, conditions (5) should also be fulfilled by the approximate PDF. 
Another requirement for the approximate PDF, as stated above, is that it 
must include many parameters so that high level of approximations can be 
reached. 

There are four matters need to be addressed for the PDF solution of 
nonlinear random MDOF systems: 

• Formulate a versatile and consistent PDF model so that condition (5) 
can be fulfilled . 

• Arbitrary number of unknown parameters can be included in the PDF 
model and the precision of approximate PDF solution can be improved as 
the total number of unknown parameters increases. 
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• Formulate a solution procedure with the PDF model so that practical 
problems can be solved consistently . 

• The PDF model and solution technique must be valid for MDOF sys­
tems. 

Possible strategy attempting to address these four matters will be dis­
cussed in detail and used for the approximate PDF solution of MDOF 
systems in next sections. 

3. Approximate PDF Solution of Random MDOF Systems 

It is assumed that the approximate PDF of random MDOF system 
fulfills the following conditions: 

! p (X; a) > 0 

P (X; a) = 0 

finn P (X; a)dx = 1 

i = 1,2"", nx (6) 

where P (x; a) denotes the approximate PDF of X; Dr;'" = [ml - CIlTI, ml + 
dIlTll x [m2 - C20'2, m2 + d20'2l x ... x [mi - CWi, mi + dWil x ... x [mn", -
Cn",O'n", , m n", +dn",O'n",l eRn", in which mi and O'i denote the mean value and 
standard deviation of Xi, respectively. Ci > 0 and di > 0 are defined such 
that mi - CWi and mi + dw locate in the tails of the PDF of Xi and the 
derivatives of the PDF of Xi with respect to Xi at mi - CiO'i and mi + dw 
are zero. 

The approximate'PDF solution P (x; a) of Eq. (3) is assumed to be of 
the form 

"" { C expQn(x;a) X x a E Dr;'" x RNp 

P (x;a) = 
o x t;t Dr;'" 

(7) 

where C is normalization constant and Qn(x; a) is a polynomial in the state 
variables Xl, X2, ... ,Xn",. The detailed form of the polynomial Qn(x; a) can 
be determined based on known information. Generally, the following form 
of Qn(x; a) may be used: 

n", 

Qn(x; a) = L aixi+an",+lx~+an",+2XIX2+-' .+an",(n",+3)/2X~", +-. +aNpx~", 
i=l 

(8) 
which is a n-degree polynomial in Xl, X2, ... , Xn", . 

Eq. (3) can also be written as follows: 

{) fj f {)p Gij {)2p - 0 -p+ j--- -
{)Xj {)Xj 2 {)Xi{)Xj 

(9) 
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rv 

Generally, the FPK equation can not be satisfied exactly with p (x; a), 

because P (x; a) is only an approximation to p(x), and the total number Np 

of unknown parameters is always limited in practice. Substituting P (x; a) 
for p(x) in Eq. (9) leads to the following residual error 

(10) 

Substituting Eq. (7) into Eq. (10) yields 

~(x; a) = 8(x; a) P (x; a) (11) 

where 
8(x;a) = fj 8Qn _ Gij ( 82Qn + 8Qn 8Qn ) + 8fj (12) 

8xj 2 8Xi8xj 8Xi 8xj 8xj 

which can be considered as local residual error of Eq. (9) if p(x) is replaced 

by p (x; a). 

Because P (x; a) =1= 0, therefore, the only possibility for P (x; a) to satisfy 

Eq. (9) is 8(x; a) = O. However, usually 8(x; a) =1= 0 because P (x; a) is only 
an approximation to p(x). In this case, another set of mutually independent 
functions Hk(X) which span the space RNp can be introduced to make the 
projection of local residual error 8(x; a) on RNp vanish. Therefore, this 
method may be called a projection method. Suppose that 8(x; a)Hk(x), 
k = 1,2, ... ,Np , is integrable in ~Np, then, according to the above idea of 
projection method, 

k = 1,2,," ,Np (13) 

or 

r [fj 8Qn _ Gij ( 82Qn + Gij 8Qn 8Qn ) + 8fjjHk(X)dx = 0 
i'IRnx 8xj 2 8Xi8xj 8Xi 8xj 8xj 

k = 1,2, ... , Np (14) 

This means that Eq. (9) is satisfied with P (x; a) in the average sense of 
integration if 8(x; a) Hk(X) is integrable in ~nx. 

By selecting Hk(X) as X~lX~2 ... x~~x fN(X), k = kl + k2 + ... + knx' 
being kl' k2, ... ,knx = 0,1,2" .. ,Np such that 8(x; a) Hk(X) is integrable 
in ~nx, we give Np quadratic nonlinear algebraic equations in terms of Np 
undetermined parameters from Eq. (14). The algebraic equations can be 
solved with any available method to determine the parameters. 
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Numerical experience showed that a convenient and effective choice for 
function fN(X) is Gaussian PDF. Because of the particular choice of fN(X), 
the integration in Eq. (14) can be easily evaluated by using the relationships 
between higher and lower order moments of Gaussian stochastic processes. 

4. Numerical Example 

Example 1. Consider the following nonlinear random two-degree-of­
freedom system: 

.. 1·· 3 S 
YI + 2al(Sl1YI + 2a2S12Y2) + 2a3YI + 4a4YI + 6aSYI = WI(t) (15) 

.. 1 .. 3 S 
Y2 + 2al[2(1 - a2)SI2YI + S22Y2] + 2a6Y2 + 4a7Y2 + 6a8Y2 = W2(t) (16) 

where aI, a2,"', a8 are some constants; Wi(t), (i = 1,2), is Gaussian white 
noise. Denoting YI = Xl, YI = X 2, Y2 = X3 and Y2 = X4, we can express 
the system by the following four-dimensional nonlinear random system: 

Xl = X2 (17) 

X2 = 1 3 S 
-2al(Sl1X2 + 2a2S12X4) - 2a3XI - 4a4XI - 6asXI + Wl(t) (18) 

X3 = X4 (19) 

X4 = 1 3 S 
-'2al[2(1 - a2)S12X2 + S22X4] - 2a6X3 - 4a7X3 - 6a8X3 + W2(t) 

(20) 

For this system, the exact stationary PDF solution [7, 9] is 

( ) C { [1 (2 2) 2 4 6 P Xl, X2, X3, X4 = exp -al 2 X2 + X4 + a3x l + a4x l + aSxl 

+a6x~ + a7xj + a8x~]} (21) 

where C is a normalization constant. 
In the following analysis, the approximate PDF solutions obtained with 

the proposed projection method for different n values are compared with 
this exact solution. It is noted that the equivalent stochastic linearization 
method is a special case of the projection method if fN(X) is selected to 
be the PDF from an equivalent stochastic linearization and n = 2. In this 
example, the function fN(X) is selected to be the stationary PDF from 
equivalent stochastic linearization. 

For al = a3 = a4 = a6 = 1, as = a7 = a8 = 0.5 and arbitrary values of 
8 11 , 812 , 822 and a2, the system is highly nonlinear, and the approximate 
PDFs of Xl and X3 obtained with the presented method are compared 
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with the exact logarithmic PDF solutions in Figures 1 and 2. It is apparent 
that the approximate solutions for n = 4 are very close to the exact solu­
tions. For n = 2, the results coincide with those from equivalent stochastic 
linearization. The PDF solutions for n = 4 are a great improvement on 
those for n = 2. 

In order to show the tail performance of the PDFs, the logarithmic 
PDFs are shown and compared in Figures 3 and 4. It is seen that the ap­
proximate PDFs for n = 4 are close to the exact PDF solution even in 
the tails. These results validate the method for nonlinear random MDOF 
systems. 
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Figure 1 - Probability densities of Xl in example 1 

1.6 

It is noted that the results from equivalent stochastic linearization much 
deviate from the exact solutions, specially in the tails of PDFs. Numerical 
experience showed that the results from equivalent stochastic linearization 
also much deviate from the exact solutions in the tails of PDFs even for 
weakly nonlinear systems. In other words, the tail behaviors of PDFs are 
sensitive to the system nonlinearity. Hence much attention must be paid 
when the equivalent stochastic linearization method is used in application, 
particularly when reliability analysis is concerned. 



www.manaraa.com

92 

u. 
Q 
a. 

-LL 
Q 
a. -m 
.3 

-1.6 -1.2 -0.8 -0.4 

.. 
I 

():a 

0.5 

0.4 

0.3 

0.2 

0.1 

\ 

\ 

o 

--Exact 
..... ·n=4 
-. _. n=2 

0.4 0.8 1.2 1.6 

Figure 2 - Probability densities of X3 in example 1 
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Figure 3 - Logarithmic probability densities of Xl in example 1 
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Figure 4 - Logarithmic probability densities of X3 in example 1 
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From numerical experience we found that exact PDFs of Xl and X3 can 
be obtained if n = 6 and exact PDFs of X2 and X4 can also be obtained if 
n ~ 2 for this system. We further found from numerical experience that the 
projection method may provide a tool for the exact PDF solutions of the 
systems which exact PDF solutions are exponential functions of polynomial. 

5. Conclusion 

The recently proposed method [4, 5] for the approximate PDF solution 
of nonlinear random vibrations is extended to obtain approximate PDF 
solutions for random MDOF systems. The approximate PDF solution is 
taken as an exponential polynomial in the state variables of the system and 
a set of unknown parameters. Local residual error is determined by substi­
tution of the approximate solution in the governing FPK equation. Then, 
a set of basis functions spanning a finite-dimensional real space is chosen, 
and the projection of the residual error is made to vanish on this space in 
order to formulate quadrat.ic algebraic equations for the unknown parame­
ters. The approximate PDF solution is thus obtained upon solving for the 
unknown parameters. The proposed solution procedure and numerical re-
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suIts show that (1) the method is not limited by the degree of nonlinearity 
of the system and thus suitable for highly nonlinear random systems; (2) 
the approximate PDF model meets the requirement of probability theory; 
(3) for systems excited by white noise, as encountered in many problems 
in science and engineering, the resulting algebraic equations are quadratic 
and easy to solve; (4) numerical results validated the method for MDOF 
systems; (5) the solution procedure is consistent, systematic and thus easy 
to implement on computers; and (6) the method may provide a tool for the 
exact PDF solutions of the systems which exact PDF solutions are expo­
nential functions of polynomial. 
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STABILITY AND HOPF BIFURCATION OF A FOUR-WHEEL-STEERING 
VEHICLE INVOLVING DRIVER'S DELAY 

H. Y. HU and Z. Q. WU 
Institute of Vibration Engineering Research, 

Nanjing University of Aeronautics and Astronautics, 

Nanjing 210016, China 

1. Introduction 

With increase of vehicle speed, there is an increasing demand for safety in driving. As 
the large yaw rate and sideslip angle of a vehicle body in high speed turning can not be 
well controlled by steering front wheels only, the four-wheel-steering (4WS) technique 
has been developed over the past decade. A great number of studies have been made on 

various control strategies for 4 WS vehicles since the first 4 WS system was reported. Yet, 
few archival publications dealt with the dynamics of 4WS vehicles with the time delay 
in driver's response and nonlinearity of the lateral tyre force taken into account. These 
effects on the vehicle dynamics, hence, are still open problems. Moreover, most control 
strategies designed for 4WS vehicles are based on the limit dynamics, i.e., the dynamics 
of a vehicle running at infinitely low or high speed, because the dynamic behavior of a 
vehicle at medium or high speed is very complicated and far from clear. 

This paper presents a new mathematical model for 4WS vehicle-driver systems 
during turning, with the nonlinearity in lateral tyre force and the time delays in the 
driver's response and steering mechanism taken into consideration. The model is 
described by a set of 5 dimensional nonlinear differential equations with a time delay, 
which results in an infinite dimensional solution space. On the basis of this model, the 
steady state motion of the vehicle is determined. Then, the asymptotic stability condition 
of a typical steady state motion is given. The Hopf bifurcation of the steady state motion 
with the variation of vehicle speed, or preview distance and time delay of driver is 
discussed in two cases when the linear and bilinear control strategies of rear-wheel­
steering are used, respectivelv. 
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2. Model for the Vehicle-Driver System 

2.1 LATERAL DYNAMIC EQUATIONS OF VEHICLE 

Consider the vehicle model shown in Figure 1, where a symmetric rigid body of mass m 

with four wheels is moving at a constant speed U. Let G denote the center of mass, 
where the coordinate frame fixed on the vehicle body originates. For this model, the 
lateral velocity V and the yaw angular velocity r yield 

{
m(.v +rU) = 2FJ cos8 J +2Fr cos8 r , 

I zr=2aFJ cos8J -2bFr cos8 r , 
(1) 

where I z is the inertia moment of rotation of the vehicle body with respect to the 

vertical axis z, a and b are the distances from G to the front and rear axles, 8 J and 8 r 

are the steering angles applied on the front and rear wheels, FJ and Fr are the lateral 

forces due to the contact between the tyre and the road surface at each front and rear 
wheel. 

r--
y 

u 

o 

Figure 1. A 4WS vehicle in turning 

y 

Desired 
path 

X I 

Figure 2. Steering model 

The lateral force is a function of the physical properties of the tyres and the 
corresponding sideslip angle a J or a r observed on the front wheel or rear wheel, 

respectively. These sideslip angles can be determined according to the simple geometric 

relations shown in Figure 1 as follows 

V+ar 
a J = arctan(--) - 8 J ' 

U 

V-br 
a = arctan(--) - 8 . 

r . U r 
(2) 

The most popular tyre model is the Magic Formula developed by Pacejka (1989). In this 

paper, the third order truncation of the formula will be used 
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(3) 

where C j , C3, Dj and D3 are positive parameters. 

In addition, a fixed frame of coordinates (x, y, ljI) is defined, where (x, y) 

represents the location of G in driving and ljI the heading angle of the vehicle. 

Obviously, the following relations hold 

y = V cos 'If + U sin 'If , 'If=r. (4) 

2.2 MODEL FOR DRiVERS 

To investigate the effect of perceptual delay of a driver on the stability of vehicles, many 

mathematical models have been proposed for the driver, who senses the deviation from 

the desired path and steers the vehicle to reduce the deviation as shown in Figure 2. In 

this paper, the simplest driver model suggested by Nagai and Mitschke (1987) is used. 

The model includes an algebraic equation and a first order differential equation. They 

describe the deviation from the desired path and the retardation of driver and steering 

mechanism, respectively 

{
Ye(t + Tp) ~ Yd(t+ Tp)-y(t)- ~ yet), 

8 f (t) + 1'.8 f (t) = KmYe (t - Td), 

(5a) 

(5b) 

where L denotes the preview distance, y(t) the lateral displacement of the vehicle, 

Y d (t) the desired lateral displacement, Ye (t) the error between desired and actual 

lateral displacement, Tp the preview time, 1'. the time delay of the steering mechanism, 

Td the time delay of the driver, Km the steering gain, respectively. 

Substituting Equation (5a) into Equation (5b) yields 

. L 
7',8 f(t)+8 f (t) = Km[Yd(t - Td)- y(t- T)- U y(t - T)], (6) 

where 

T=Tp+Td>O 

represents the total time delay in the vehicle-driver system. 

2.3 CONTROL STRATEGIES FOR REAR-WHEEL-STEERING 

(7) 

As shown in Equation (1), the lateral acceleration is composed of two components, the 

lateral velocity V and the yaw rate r. As the speed of vehicle increases, the lateral 
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acceleration delays longer than the yaw response. This is mainly attributable to the fact 

that with an increase in vehicle speed U, the sideslip angles defined by Eq.(2) decline, 

and even become negative. Thus, a number of control strategies have been developed to 

make the steady state sideslip angles as close to zero as possible. 
A popular control strategy is to steer the rear wheels on the basis of a pre­

determined function as below 

(8) 

There are two versions of this control strategy. One is the linear strategy, which requires 

-b+ ma U 2 

CI (a +b) 
ko = ---'-'-----'--

mb U 2 a+---
k, = O. (9) 

DI(a +b) 

b aD 
This strategy features that ko ~ -- < 0 when U ~ 0 and ko ~ _I > 0 when 

a bCI 

U ~ +00. The other version is the bilinear strategy with the coefficients given by 

k = 2(aCI -bDI )+mU 2 

, 2DI U 
(10) 

2.4 COUPLED DYNAMIC EQUATIONS 

In summary, the motion of the 4WS vehicle-driver system of concern yields a set of 
non-autonomous difference-differential equations of 5 state variables (V, r, y, f//, tS I) as 

following 

mY' = -mrU + 2FI (V,r,tS I) costS 1+ 2F, (V,r,tS I) cos(kotS I + k,r), 

Ii = 2aFI (V,r,tS I )costSl -2bF,(V,r,tS I )cos(kotS I +k,r), 

y = V cos f// + U sin f// , 

f//=r, 

. tS l K L Km 
tS I = ----2!..[Y(t- T)+-y(t-T)]+-Yd(t- Td), 

T: T: U T: 

(11) 

where FI (V,r,tS I) and (V,r,tS I) can be determined from Eqs. (2), (3) and (8), while 

Y d (t - Td ) can be considered as the external disturbance in the dynamic analysis. 



www.manaraa.com

99 

3. Steady State Motions 

Setting all derivatives in Eq.(ll) as zero and making necessary manipulations, one 
obtains a set of algebraic equations governing the steady state motion of the vehicle 

jr=o, 8[ =-Kmy, V=-Utanlf!, 

[C] (If! + 8 [) - C3 (1f! + 8 [)3]cos(k,,8[) = 0, 

[D] (If! + k,,8 [ ) - D3 (If! + k,,8 [ )3] cos(k,,8 f ) = o. 
(12) 

As proved in Wu (1998), Equation (12) has a trivial solution (0,0,0,0,0) 

corresponding to the vehicle motion along the straight line y = 0, as well as 8 non­

trivial solutions corresponding to the steady state motions due to the cubic nonlinearity 
of tyre forces. This fact is completely different from the case studied in current literature 
where the linear model of tyre forces was used. 

4. Stability of Trivial Steady State Motion 

By linearizing Equation (11) at (0,0,0,0,0), one has the corresponding characteristic 

equation 

(13) 

where 
i = 1,2,3,4; (14) 

(15) 

aoo = 0, 
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Because aOI :;:' 0 when ko :;:' 1, none of the roots of Eq.(13) is zero. Thus, the trivial 

steady state motion becomes unstable only when Eq.(13) has a pair of imaginary roots 
A = ±iOJ. If this is the case, Eq.(13) is equivalent to the following conditions 

{
Re(OJ, T) ;: (aOI - a21 OJ 2) cosOJT + (a l1 OJ - a 3l OJ3) sinOJT + a40 0J 4 - a 20 OJ 2 = 0, 

_ 3 2 • 5 3 (16) 
Im(OJ,T)=(a l1 OJ-a3I OJ )cosOJT-(aOI-a210J )sInOJT++OJ -a30 OJ =0. 

Solving Eq.(16) for cosOJT and sinOJT, one has 

cosOJT= (aOI -a2IOJ2)(a40OJ4 -a20OJ2)+(al1OJ-a3IOJ3)(OJ5 -a30 OJ3) 

(aOI - a21 OJ 2)2 + (a l1 OJ - a31 OJ3)2 

. T- (aOI -a2I OJ2)(OJ5 -a30OJ3)-(al1OJ-a3IOJ3)(a40OJ4 -a20 OJ2) 
SInOJ - 2 2 3 2 

(a OI - a2l OJ ) + (al1 OJ - a 3l OJ ) 

(17) 

Eliminating cosOJT and sinOJT in Eq.(17) results in the critical condition governed by 
the following algebraic equation of 10 orders in OJ 

10(22 )8(222 )6 OJ + a40 - a30 OJ + a30 - a3l - a20 a40 OJ 
(18) 

If Eq.(18) has no positive real root, the system is asymptotically stable for arbitrary time 
delay O:s; T < +00. Otherwise, one can solve Eq.(18) for OJ and substitute the positive 

solution into the second equation in Eq.(17), then one solves the equation for the 
minimal solution Tmin . Obviously, 

Tc = max(Tmin ,0) (19) 

gives the critical time delay when the vehicle undergoes instability. 

5. Hopf Bifurcation 

To make sure that the Hopf bifurcation occurs when the system undergoes instability 
with the variation of a system parameter, say, fJ around the critical value fJo with 

A(fJo) = ±iOJ , one needs to check the transversality condition as following 

dAI Re( dfJ 1'=1'0):;:' 0 . (20) 

In what follows, let U, L and T be the control parameters and suppose them to be 

functions in fJ. By differentiating Eq.(13) with respect to fJ, one has 
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d..i [~ (T'~J . ~J-I) -AT (5 ~4 ~ • ~j-I)] dU dL dT 0 (21) - L..ajl - /l, +]/l, e + /l, + L..ajo]/l, +-"'+-"'-"'=. 
d,u j=O j=1 d,u d,u d,u 

By substituting ..i(,uo) = ±iUJ into Eq.(21), one obtains 

d..i I 1 dU dL dT 
- 1'=1'0 = . [(0'2R +iO'2/ )-+(0'3R +i0'3! )-+(0'3R +i0'3! )-],(22) 
d,u 0' IR + 10' II d,u d,u d,u 

where 

O'IR = [a4IUJ4T+(3a31 -a21 T)UJ 2 +aOIT-all]cosUJT 

+ [( 4a41 - a31 T)UJ3 + (all T - 2a21 )UJ] sinUJT - 5UJ 4 + 3a30 UJ 2 - alo ' 

0'11 = [(4a 41 -a3I T)UJ 3 +(allT-2a21 )UJ]cosUJT 

- [a 41 TUJ 4 + (3a 31 - a21 T)UJ2 + aOI T - all] sinUJT + 4a40 UJ 3 - 2a 20 UJ, 

0' 2R = (a4W UJ 4 - a21 .UUJ 2 + aol.u ) cosUJT - (a 31 .UUJ 3 - all.UUJ) sinUJT 
4 2 

+a40.UUJ -a20.UUJ +aOO.U' 
0' 2/ = -(a4W UJ 4 - a21 .UUJ 2 + aol .u ) sinUJT - (a 31 .UUJ 3 - all.UUJ) cOSUJT 

3 
- a30,uUJ + alO,uUJ, 

0'3R = (a4LL UJ 4 -a21 ,L UJ2 +aOI,L)cosUJT-(a31,LUJ3 -all,LUJ)sinwT 
4 2 

+a40,Lw -a20,Lw +alO,L' 
0' 31 = -(a4LL w 4 - a21,Lw 2 + aOI,L) sinUJT - (a 31 ,L w 3 - all,L w) cOSUJT 

3 
- a30 ,L w + alO,L UJ, 

0'4R = (a ll w 2 -a3Iw4)coswT-(a4Iws -a21 w 3 +ao,UJ)sinwT, 

0'41 = -(a4I w s +a21 w 3 -aoIUJ)coswT+(a3Iw4 -all w 2)sinwT. 

(23) 

au,U and aU,L represent the partial derivatives of aij with respect to U and L, 

respectively. From Eq.(22), there follows the transversality condition 

dU dL dT dU dL dT 
0'1R(0'2R - + 0'3R - + 0'4R -) + 0'11 (0'2/ - + 0'31 - + 0'41 -) # O. (24) 

d.u d.u d.u d.u d,u d.u 

6. Numerical Simulations 

To demonstrate the above analytic results, consider the case study of a 4WS vehicle­
driver system in Nagai et al (1995), where the following system parameters were fixed 
as constants 
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{
m= 1300 Kg, 

C, = 44400N / rad, 

C3 = 44400N / rad 3 

whereas 

I z = 3000 Kg· m 2 , 

D, = 43600N / rad, 

D3 = 44400N / rad 3, 

a= 1m, 

Km = 0.02, 

T, = 0.2 s, 

10m/ s< U:S:: SOm/ s, 10m< L:S::SOm 

were taken as the changeable parameters. 

b = 1.6m, 

(25) 

(26) 

Given a pair of (U, L) , one can determine a corresponding ~. numerically from 

Eqs.(17-19). In this way, one obtains a 2-dimensional surface ~. (U, L) in the parameter 

space (U, L, T) as shown in Figure 3. The most flat part of surface ~. (U, L) in Figure 

3 coincides with the plane T = O. i.e., the trivial steady state motion of the vehicle 
running at these combinations of (U, L) is not stable even though there is no time delay 

in the response of driver. It is obvious that the 4WS vehicles, especially the one with 
bilinear control strategy has the largest stable region in (U, L) plane, no matter whether 

the time delay is taken into account or not. 
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Figure 3. Critical time delays for various combinations of (U. L) 
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Furthermore, it can be numerical verified that the transversality condition holds in 
the surface ~. (U, L) and hence the Hopf bifurcation exists in the trivial steady state 

motions of both 2WS and 4WS vehicle systems. To support this assertion, the Runge­
Kutta approach with variable step was used to solve Eq.(ll) in time domain. Figure 4 
shows the Hopf bifurcation of the trivial steady state motion of a 4WS vehicle equipped 
with bilinear control strategy runs at a speed of U = 30m / s when driver has the 
preview distance of L = 40m. 
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Figure 4. The Hopfbifurcation cased by the time delay 

7. Conclusions 

The 4WS vehicle-driver system of concern has a trivial steady state motion when it runs 
along a straight line, as well as 8 non-trivial steady state motions owing to the cubic 
nonlinearity in lateral tyre force. 
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With increase of driver's delay, the stable region for the trivial steady state motion 
shrinks in the plane spanned by the vehicle speed and the preview distance, and a 
supercritical Hopf bifurcation occurs. Thus, the lateral motion of vehicle will oscillate 
periodically if the driver's delay exceeds the critical value T,; given by Eq.(l9). 

Compared with 2WS vehicle, the 4WS vehicle equipped with both control strategies 
has better performance in the stability of the trivial steady state motion if there is no 
time delay in driver's response. Furthermore, the bilinear control strategy works better 
than the linear control strategy when the time delay is taken into consideration. 
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1. Introduction 

Floating cranes are used for a variety of tasks in marine technology. In coastal regions 
crane barges are the most commonly used vessels; in offshore engineering, larger crane 
ships or semisubmersibles can be found. All are used for lift operations, transportation, 
the construction of large offshore structures and for salvage operations. 

The practical problems that arise during crane ship operations include the inability 
to position accurately the objects being handled, and collisions. The aim of this research 
project is to get a mathematical description for crane ship operations which enables pre­
dictions about the dynamical behavior of the vessel to be made. Then the results of the 
analysis can be used for safety considerations and to enlarge the operating range of crane 
ships. 

The dynamical system consisting of the vessel, the crane and the load is frequently 
modeled as a system of coupled rigid bodies. Water waves provide the principal disturbing 
force. Waves, which drive the coupled system of vessel and load - usually represented by 
a pendulum - are the main source of such problems. The motion of the center of mass 
during lifting operations can also lead to unwanted dynamic behavior. 

In recent years several publications have dealt with the dynamics of crane vessels. 
Rieckert, 1992, used a mathematical model with eight degrees offreedom and compared the 
results of the analysis of the linearized equations of motion with experiments. Numerical 
simulations and experimental investigations concerning lifting and lowering operations 
were made by Kreuzer and Mohr, 1997. The influence of nonlinearities arising from the 
mooring system and viscosity of the fluid are included in a model developed by Jiang and 
Schellin, 1990. The same model was used in a similar study by Kral, Kreuzer and Wilmers, 
1996. They also showed that different phenomena, from period doubling to chaos, can be 
found in the dynamics of the crane vessels. 

In this paper we consider the behavior of a mechanical model of a crane barge, based on 
the work of Jiang, 1991. We then show the results of simulations and bifurcation analyses, 
which are based on a software package developed by Baumgarten, 1998. The results are 
compared with experiments done at the Technical University Hamburg- Harburg and the 
Berlin University of Technology. 

105 
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2. Mathematical Model 

To build our mathematical model, we have assumed that the crane vessel and its suspended 
load are confined to a plane. 

Z, 'If 

Figure 1. Crane vessel 

The hull is modeled as a rigid body and the load is idealized as a mass point. This 
leads to the equations of motion of a multibody system: 

M(y)y+k(y,y) = q(y,y) (1) 

with the mass matrix M, the generalized gyroscopic forces k, the generalized forces q and 
the generalized coordinates y = (x, 8, z, a)T, see Figure 1. 

The generalized forces q include 

the hydrostatic forces 

(2) 

with the density of water p, gravitational constant g, cross section at the water surface 
Aw , heave motion z, the pitch angle 8, mass of the vessel and the load m p , m[ and 
the metacentric height hm' 
the forces resulting from the mooring system, approximated by a polynomial, see also 
Schellin and Mohr, 1998: 

(3) 

where Ci are the coefficients characteristic for the mooring system and x is the dis­
placement in the surge direction, 

- the forces due to viscous drag 

(4) 

with the drag coefficient CD, the width of the hull B and draught T, 
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the exciting wave force due to regular waves of frequency w, which is divided into a 
periodic part and a constant part representing the drag force 

Fw(t) = apdynOCOS(wt) ( 
apdyn T cos(wt) + a2 Pdrag ) 

apdyn z cos(wt) 
o 

with the wave height a and the frequency dependent coefficients Pdyn i and Pdrag, 

(5) 

the linear hydrodynamic response forces due to the vessel's motion with the degrees 
of freedom of the crane barge collected in y = (x, (), z) T 

(6) 

where in case of planar motion the frequency dependent part is described by the 3 x 1 
vector So, which is computed from the finite state space model 

with the 3 X 3 hydrodynamic coefficient matrices Ai, Bi (Jiang, 1991). 

This leads to a set of 20 differential equations summarized as follows: 

d 

dt 

3. Numerical Analysis 

y 
(M + aoo)-l(qe - k + So + fw) 

Sl - A3 so - B 3y 
S2 - A 2 so - B 2y 
S3 - AlSO - B 1y 

-Aoso - BoY 

(7) 

(8) 

The numerical analysis is subdivided into two parts: (1) simulation of the system dynamics 
by integration of the equations of motion; and (2) bifurcation analysis. 

3.1. SIMULATION 

The simulation of a dynamical system allows for the investigation of the motion of a vessel, 
given the equations of motion and a set of initial conditions. Figure 2 gives an example 
for the motion of the crane barge. Starting from the equilibrium position of the unforced 
vessel with the length of the hoisting rope at 15m, the motion approaches a stable motion 
with period one (left). 

In right part of Figure 2 the same system approaches a different motion due to a 
different set of initial conditions. Here the steady-state solution has the period two. 

From these two examples it can be seen that mere simulation cannot reveal enough 
information to describe the system dynamics sufficiently. Therefore) bifurcation analysis 
has been used systematically to find different periodic solutions for the periodically forced 
system. 
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Figure 2. Time simulation of crane vessel 

3.2. BIFURCATION ANALYSIS 

A A A 

V V V 
V 

4 6 8 10 
tiT 

Depending on the choice of the system's parameters, the dynamics of a crane vessel driven 
by regular waves could show periodic, quasi-periodic and chaotic behavior after transient 
motion has decayed. Here the analysis focuses on periodic solutions, which are character­
ized by a small number of points Xi in state space generated by a Poincare map P. For a 
periodic motion, these points Xj satisfy the algebraic equation 

G(X) = pl(x) - X = 0 (9) 

where I is the periodicity of the motion. 
One means of characterizing the system behavior is a bifurcation diagram: A system 

state, that is characteristic for the solution, is plotted versus a control parameter. Other 
parameters of the system are kept constant. To follow a periodic solution, a control pa­
rameter A is included in equation 9: 

G(x, A) = pl(x, A) - x = o. (10) 

Here the length of the hoisting rope was used as parameter, and the surge motion was 
used to characterize the specific solution. 

With the program used for the bifurcation analysis, stable and unstable paths of peri­
odic motion can be traced by means of path following algorithms, see Baumgarten, 1998. 
These algorithms give a parameter dependent solution of an underdetermined algebraic 
system of equations. 

The solutions, which can be described as curves, are approximated by a set of points, 
see Figure 3. The first point of the solution is found by shooting methods. Then a predictor­
corrector procedure is applied to calculate more points which correspond to periodic mo­
tion of the vessel. 

Path following methods can be classified either by the type of the predictor, the correc­
tor, or the parameterization. The parameterization determines the identification of points 
on the curve locally. Predictors give an estimation for a new point on the curve. Frequently 
used types are shown in Figure 4. 
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A corrector iteration is started from the estimated value. This requires solving the 
underdetermined equation 

predictor of 
order 0 

secant 
predictor 

G(x,.\) = o. 

tangent 
predictor 

Figure 4. Predictor types 

(11) 

When following a periodic solution a change of stability indicates a bifurcation. This 
can be due to a new branch of a periodic motion or a chaotic attractor. By disturbing 
the state of the system, we found different types of periodic behavior near bifurcation 
points by a disturbance of the state of the system. Shooting methods were then applied 
to find a periodic solution near the initial value, and the curve continuation algorithm 
was restarted with the value found by the shooting methods. This method requires a 
high amount of manual modification of the values used in the analysis before applying 
the shooting techniques, but it is more likely to find a new solution near a critical point 
compared to other algorithms. 

For the mathematical model of a crane barge, periodic motions with period one, two 
and three were found. The results of the bifurcation analysis are shown in Figure 5. 
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Figure 5. Bifurcation Diagram 

4. Experiments 

Experiments were made in the wave tank of the Technical University Hamburg- Harburg 
with a model of a crane barge scaled 1:100. The setup allows for variation of the main 
parameters also used in the mathematical model, and the motion of the vessel is measured 
during the experiment. Similar experiments with a model scaled 1:25 where carried out at 
the Berlin University of Technology. 

wave meters (1-4) 

beach 

x, <P 

Y,e 

z, '" 

Figure 6. Experimental setup 

wave 
generator 

The Sensors yield the signals for the position of the hull, its angular velocjty and the angle between the 

hull and the hoisting rope. 
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4.1. EXPERIMENTAL SETUP 

The model of the crane barge was positioned in the middle ~ection of the wave tank. Sensors 
allowed for measurement of the position of the hull, its rotation and the position of the 
load relative to the hull. A wave generator, with a wave flap, was used to produce regular 
waves and to obtain a periodic forcing. The driving force was evaluated by measuring the 
height and frequency of the waves by means of wave meters, see Figure 6. 

Figure 1. Mooring Sy,tem 

Several experiments with different mooring systf'ms showed that the characteristics of 
the mooring line forces are crucial to the vessel's dynamics. It was found from calculations 
as well as experiments with mooring systems that an experirnentaJ setup with chains 
does not accurately represent real mooring systems. The spring~mechanism, which was 
developed in order to replace the chains. is shown in Figure 7: it consists of a spring and a 
combination of a cam and a roll. This yields a llon~uniforlll ratio between the surge motion 
and the strain of the spring. 

The measurements were made in regular waves after the transients had decayed. 

4.2. NO;",'LINEAR PHE~O"IE\"A 

One concern in the experiments was finding coexisting attractors. i.e. a set of parameters 
with at least two different stable solutions. \lodel tests of the dynamical behavior of the 
crane barge revealed the existence of stable one~ and t\\'o~periodic motions. Figure 8 shows 
phase portraits and Poincare points for t he motion of t he model crane barge at a frequency 
of 0.9 Hz. Here the surge motion was used to vi:oualize t lie type of motion of the entire 
system. 

The period~one solution was obtained by starting the experiment from equilibrium, i.e. 
the vessel was not moving when the wave generator was started. The coexi~ting solution 
with period two was reached by disturbing the system significantly. In this case the initial 
position of the vesspl was prescrilwd which led to high mooring forces at the beginning of 
the experiment. 

ExperiIllental bifurcation diagrams were obtained from a number of different l1Ieasure~ 
ments with a variation of one of the parameters. Here the length of the hoisting rope was 
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used as parameter for the experimental bifurcation diagrams. This led to the diagram 
shown in Figure 9. 
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Figure 9. Experimentally determined bifurcation diagram 

This experimental technique allows for determination of stable periodic motions with 
a sufficiently large bassin of attraction. 

5. Conclusions 

By using a planar model of a crane barge we have confirmed numerically and experi­
mentally the existence of nonlinear phenomena in the dynamics of crane vessels - in the 
numerical investigation as well as in the experimental analysis. It was found that nonlinear­
ities, especially in the mooring system, have significant influence on the vessel's dynamics 
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so that linearized approximations of the equations of motion cannot describe the dynam­
ics sufficiently. Tools from the theory of nonlinear dynamics can be applied successfully in 
order to trace different solutions or bifurcations. 
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On the stability of systems 
Of differential equations unsolved for derivatives 

by 

Le Luong Hi 

1. Introduction 
Consider the system of differential equations 

dy dy 
dt = f(t,y, dt), (1) 

or y=f(t,y,y), where tER+ = [O,+<X) ; y=(YPY2,···,Yn), f=(J;,f2, ... ,fJ are 

vectors in the n-dimensional Euclidean space Rn. Let f: R+ x n ~ Rn; n is a domain 

defined as follows: 

n: {(y, z): y E Dc Rn; Z E Rn : Ilzll < <X)}. 

Let y(t; to, Yo ) = cp(t) t E R+ be a solution of system (1). By putting 

y = cp(t) + x, (2) 

we replace the system (1) by 
x = X(t,x,x), (3) 

where X(t,x,x)= f(t,cp + x),cp + x) - f(t,cp,cp); X(t,O,o) = 0. 
The system of equations (3) is called the system of equations of excited motion, 

while its non-zero solutions are called excited motions. 

In this paper we suppose that the following two conditions hold: 
i) X(t, x, x) is a defined, continuous function satisfied all conditions of uniqueness of the 
solution in the domain 

t ~ t 0 ~ 0; Ilxll ~ H, Ilxll < +<X) , (4) 

where 11.11 is the Euclidean norm; 

ii) Solutions of the system (3) can be extendable; i.e. x(t;to, xo) is defined for all 

t~to; Ilxll~H. (5) 

We will apply all known definitions on the stability of motion as well as the 
second Liapunov's method to study this problem. As in problems on the stability for 
systems of differential equations in standard form, in order to solve this problem we 
introduce functions V(t, x) of real variables (t, x) E Rn+!, defined in the domain t ~ to; 

Ilxll ~ H , and vanishing at the point x = ° 
V(t,O)=O. (6) 
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Let x = x(t; to, xo) be a solution of the system of differential equations of excited 

motion (3). Then the total derivative of the function V(t, x) is presented in the form 

(7) 

From here it follows that 
t 

V(t,x)= V(to,xo)+ fV(r,x(r;to,xo))dr. (8) 

In connection with the function V(t, x), we will apply definitions on the sign­

definiteness, the permission of indefinitely small extreme limit that are well - known 
from the theory of the stability of motion, for example in [1]. 

Together with the function V(t, x) defined in the domain (5) we consider 

functions ~ (t, x, z) of 2n +1 variables (t, x, z) defined in the domain 

t ~ to ~ 0; Ilxll::; H, Ilzll < +00. (9) 

In the following we will use definitions on the sign - defmiteness of the function 
VI (t, x, z) in the recpect to the variable x (x - sign - definiteness) [2] 

Definition [2]. The function ~ (t, x, z) is called positive (negative) definite with 

respect to the variable x (x - positive definite) if there exists a positive definite function 
WI (x) dependent only on the variable x, such that the following inequality is satisfied 

VI(t,X,Z)~WI(X) (or VI(t,X,Z)~-WI(X). (10) 

Notice that in [2] it is shown the function VI (t, x, z) is x - positive definite, if and 

only if there exists a continuous increasing function c(r), r E [0, H], c( 0) = 0 such that in 

the domain (9) the following inequality is satisfied 

V;(t,x,z)~c~lxll). (11) 

2. Theorems on stability 

Theorem 1. I) 1ffor the system of differential equations of excited motion (3) there exists 
a positive definite V(t, x) such that its total derivative with respect to this system is either 

a negative semi - definite function or identically equal to zero, then the unexcited motion 

x = 0 is stable. 
2) In addition, if the positive definite V(t, x) admits an indefinitely small extreme limit 

i.e. there exists a continuous increasing function b(r), r E [0, H], b(O) = 0 such that, in 

the domain (5) the inequality 

V(t, x)::; b~lxll) (12) 

holds, then the unexcited motion x = 0 is uniformly stable. 
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Theorem 2. If for the system of differential equations of excited motion (3) there exists a 
positive definite V(t, x) admitting an indefinitely small extreme limit, such that its total 
derivative with respect to this system is a x - negative definite function, i.e. 

. av av (. . 
v~,x)= -::;- + -x t,x,x)= ~ (t,x,x)s -WI (x), 

at ax 
where WI (x) is a positive - definite function dependent only on x, then the unexcited 

motion x = 0 is asymptotically stable. 

In the following we will use the definition of the domain V> 0 in Tchetaev's 
sense and the positive definite function ~ (t, x, z) in the domain V > 0 . 

A set of points (t, x, z) in the domain (9) is called the domain V > 0 if V (t, x) > ° . 
A function VI (t, x, z) is called positive definite in the domain V > 0, if for any given 

positive number £ > 0 there exists a positive number 8(£) such that for any points 

(t,x,z) inthedomain(9),ifV(t,x»£ then Vj (t,x,z)2:8. 

Theorem 3. If for the system of differential equations of excited motion (3) there exists a 
sign-indefinite V(t, x) such that its total derivative with respect to this system is x­
positive definite in the domain V> ° in Tchetaev's sense, then the unexcited motion 
x = 0 is unstable. 

Example. Consider the system of differential equations of the excited motion 

x=ay-ax(x2 +y2)li +X2y3f(t,x,y,x,y), 

y=-ax-ay(x2 + y2)J'i. +X 3y2 g(t,x,y,x,y), 
where f and g are bounded functions satisfying conditions for the existence and 
uniqueness of solutions of the system. 

Then 

We take Liapunov's function in the form 

V=~(X2+y2). 
2 

V=-a(x 2 +y2)Yz +X3y3(j+g), 
where in a enough small neighbourhood of the origin (0,0,0) the sign of V is completely 

determined by the sign of a. Thus, in this example, if a > ° the unexcited motion x = ° 
is asymptotically stable, and if a < 0 the unexcited motion x = 0 is unstable. 

As is well known for problems on the stability of motion, sometimes we meet 
cases where we have to find conditions ensuring the asymptotic stability of the unexcited 
motion x = 0 under any initial values. This stability is called asymptotic stability as a 
whole. 
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Theorem 4. IJfor the system of differential equations of excited motion (3), there exists a 
positive definite V(/, x) admitting an indefinitely small extreme limit, such that its total 
derivative with respect to this system is a x - negative definite function, i.e. 

V(/,X)= av + av X(t,x,x)=V,(t,x,x)~-W,(x). 
al ax 

and if the function V satisfies the condition 
lim V(t,x)= +C(), 

IlxjI--·oo 
then the unexcited motion x = 0 is asymptotically stable as a whole. 

It is easily noticed that, if the right side of the system of differential equations (3) 
is not dependent on x we again get the well - known results published in handbooks on 
the theory of stability of motion. 

Based on the preceding results, further research can be proceed in different ways, 
for example, by considering the problem on the stability of motion with respect to some 
of the variables, or applying these results to the study of complicated mechanical systems 
etc. 

3.The problem of optimal stabilization. 

Consider the system of differential equations of excited motion of a control 
system 

X=X(/,X,X;U), u=(u"u2 ,,,.,un ), 

where X (t, x, z; u) is defined and continuous in the domain 

t?. to' Ilxll ~ H, Ilzll < C(); Ilull < C() . 

and u is a control action. 

(13) 

(14) 

Suppose that there is a given control quality criterion in the form of the minimum 
of the following integral 

+00 

1= fm(t,x[tlu[t])dt, ( 15) 

where m{t, x; u) is a non-negative continuous function in the domain (14), x[t] is the 

solution of the system of differential equations (13) responding to the control u{t, x), and 

u[t] = u(t, x[t]). 
The problem of optimal stabilization is as follows [3]: 

To find the control action u = u 0 (I, x) assuring the asymptotic stability of the unexcited 

motion x = 0 corresponding to the system (13). Furthermore, all other control actions 

u = u· (t, x) also guaranteeing the asymptotic stability of the unexcited motion x = 0 must 

satisfy the following inequality 
+00 +co 

fm&,xO~];uO[t])dt ~ fm(/,x·[/lu·[t])dt. (16) 

The function u = U O (I, x) is called the optimal control of the problem (13), (15). 
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According to N.N. Krasovsky's method we introduce into the study the following 
expreSSIOn 

B[V;t,x,x;u]= av + av X{t,x,x;u)+wl{t,x,x;u), 
at ax 

(17) 

where 
WI (t, x, x; u) = w{t, x; u) + x - x(t, x, x; u). 

We have following theorem 

Theorem 5. If for the system of differential equations of excited motion (13) there exist a 

positive definite VO (t, x) admiting an indefinitely small extreme limit and a function 

u = u 0 (t, x), satisfying following conditions: 

i) The function WI {t, x, x; u 0 (t, x)) is x - positive definite with respect to x; 
ii) The following equality holds: 

Blvo ;t,x,x;UO(t,x)J= 0; (18) 
iii) For all values u, the inequality 

B[V;t,x,x;u]~ 0, 

holds, then the function u = u ° (t, x) is the solution of the problem of the optimal 

stabilization (13), (14), (15). Morever, for any control action u = u * (t, x) the following 
equality always holds: 

+J w{t, x ° [t ]; u 0 [t ])dt = min +J w{t, x' ~ 1 u' [t Ddt = V 0 (t 0' x{t ° )) . 

REFERENCE 

1. Malkin I.G. Theory of Stability of Motion. Nauka, Moscow, 1966. (in Russian) 
2. Rumyantsev V.V., Oziraner A.S. Stability and Stabilization of Motion with Respect to 

a Part of Variables. Nauka, Moscow, 1987. 
3. Krasovsky N.N., Some Problems of Stability of Motion. Fizmatgiz, Moscow, 1959. 

Le Luong Tai 
Thainguyen University, Vietnam 
Email: cprtnu@hn.vnn.vn 



www.manaraa.com

STABILITY OF CONTROLLED MOTION OF A GYMNAST IN 
HIGH-SPEED MID AIR MANEUVERS 

P. MAISSER and U. JUNGNICKEL 
Institute of Mechatronics 
Chemnitz University of Technology 
Reichenhainer Str. 88, 09 J 26 Chemnitz, Germany 

AMR (1989): 150H, 150K, 202C 

Abstract 

The twisting somersaults motion of a diver in free flight is simulated using a standard man 
model based on an anthropomorphic multibody system (MBS). The aim of the paper is to 
present a Lyapunov-stable dynamic control law of an MBS with n degrees of freedom 
moving along an m-dimensional submanifold (O<m~n). The prescribed motion defining 
that submanifold results from a kinematic analysis of video sequences. The inverse 
kinematics is solved by dynamic tracking. Consistent initial velocities for the free flight are 
evaluated by nonlinear optimization minimizing the deviation of the body fixed marker 
points from the measurement data. So, the total amount of the angular momentum of the 
MBS which has to be constant during the free flight is optimized. The conservation of the 
angular momentum of the MBS defines an intrinsic constraint manifold on which the diver 
is moving. This conservation law can also be used for nonholonomic motion planning. 
The approach essentially uses differential-geometric concepts and methods well-known 
from the Lagrangian Multibody Dynamics. 

1. Introduction 

Since the Olympic Games of Atlanta in 1996 the regulations in some disciplines have been 
changed in such a way that the degrees of difficulty are not limited as before. Coaches as 
well as athletes want to get support in creating new motions, they want to get information 
about the feasibility and stability of these new motions. This point of view is especially 
important in those disciplines where the athletes have to carry out a very short and high­
speed mid-air maneuver; for example in diving off high boards or spring boards, figure 
skating and gymnastics. This paper deals with the motion of a diver from a high board or 
a spring board, and with its modelling, simulation and control by using multibody system 
dynamics. 
The twisting somersault motion of a diver in free flight is simulated by using a standard 
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man model based on an anthropomorphic multibody system (MBS). The main goal of the 
paper is to give a Lyapunov-stable dynamic control law of a tree-like MBS with n degrees 
of freedom and moving along an m-dimensional submanifold of the n-dimensional 

configuration space (0 < m::;; n). The prescribed reference motion defining that 

submanifold is obtained by kinematic analysis of video sequences of real motions. The 
approach of defining a Lyapunov-stable dynamic control law is well-known in the 
nonlinear control theory of robotics. It is based on differential-geometric concepts and 
methods used in Lagrangian Multibody Dynamics. 

2. A Standard Man Model in Multibody Dynamics 

The following dynamical investigations are based on the Saziorski standard man model [1] 
completed and used by the Institute of Mechatronics, Chemnitz, in several research 
projects in biomechanics, especially in sports, rehabilitation, and accident mechanics [5], 
see fig. 1. 
The position of the man model with respect to an inertial frame is described by 31 

generalized coordinates qa . Six of them describe the absolute position and orientation of 

the reference body pelvis, the others describe the relative positions of the bodies. Thus 
the man model has 31 degrees of freedom, 25 of which are intrinsic. 

3. Definition of a Reference Motion 

A special problem of motion control in sports is to define a reference motion. Which 
motion can be used as a reference motion? The answer could be a motion given high marks 
by the judges. A reference motion has to be defined by kinematic analysis of video 
sequences of real motions. The use of the ordinary inverse kinematics does not supply 
good results. The reason is that the measurement data of the time history of marker points 
fixed on the gymnast (in reality or a posteriori in the video record) generally leads to wrong 
driving torques calculated by inverse dynamics (even after smoothing data). Therefore, a 
special approach developed at the Institute of Mechatronics is used to get a sufficiently 
smoth motion and correct driving torques acting in the joints of the man model. That 
approach uses so-called dynamic tracking, that means the 3-dimensional man model is 
embedded in the set of marker points generated by video records, and between these 
video-generated marker points and the corresponding model-fixed marker points a visco­
elastic force coupling is assumed. The numerical integration of Lagrange's equations of 
motion yields the desired smooth time history of the reference motion. The m-dimensional 

submanifold Vm, m = n - r = 6, of the n-dimensional configuration space V·, n = 31, 
on which the man model has to move can be defined by rheonomic constraints 
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Figure 1. Kinematic scheme of the Saziorski standard man model 
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(3.1) 

where qal denote the intrinsic generalized coordinates, and q~1 (t) denotes the time 

history of the reference motion obtained by dynamic tracking, as described above. 

4. A Lyapunov-stable Force Control Law 

The main goal is to define a Lyapunov-stable motion of the man model moving along the 
submanifold ym. The control strategy should be robust with respect to initial condition 
errors, sensor noise, and modelling errors. 

In a first step, the calculated time history of the intrinsic coordinates q~1 (t ) is used to 

simulate the free flying diver, i.e. the man model is partially kinematically controlled by 

prescribing the intrinsic coordinates qal as functions of time: the system is a so-called 

underactuated or superarticulated mechanical system. Then, the remaining 6 external 

coordinates qa2 characterize the free motion of the reference body pelvis. This motion is 

strongly influenced by the corresponding initial velocities: they define the total linear 
momentum as well as the total angular momentum of the man model. Therefore, for 
kinematic control of the intrinsic coordinates the initial velocities corresponding to the 6 

external generalized coordinates qa2 have to be defined in such a way that the motion of 

the diver prescribed in the 3-dimensional Euclidean space E3 is approximated as well as 
possible. This can be done by using nonlinear optimization. The cost functional which has 
to be minimized is defined by the maximum of the squared distances between the marker 
points on the gymnast and the corresponding body-fixed marker points of the man model 
over a certain time interval. 
A very important matter related to these investigations is the description of intrinsic 
nonholonomic constraints of the man model represented by classical conservation laws: 
the conservation of the total angUlar momentum with respect to the instantaneous center 
of mass of the man model; the total angular momentum with respect to the origin of the 
inertial frame as a square function of time; and the total linear momentum with respect to 
the inertial frame as a "linear function of time. It is usual to use such nonholonomic intrinsic 
constraints for kinematic control design (nonholonomic motion planning). But, in reality, 
the human motion is controlled by forces/ torques. To get these corresponding generalized 
driving forces we can use the inverse dynamics. Under these calculated generalized forces, 
the motion of the man model will be unstable after a short time. These effects are well­
known. Therefore, a dynamic feedback control law based on the Yoronetz-equations 
(Lagrange's equations projected onto the submanifold of a constrained mechanical 
system) is used. The main idea - well-known from the nonlinear control theory 
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in robotics [4] - is the nonlinear decoupling approach, i.e. an applied force acting on the 
MBS has to be designed which fulfils the following conditions: the force law consists of 
two components, the first is a so-called feedforward component which guarantees that the 
system is moving along its nominal submanifold of the n-dimensional configuration space 
Vn, and the second is a linear feedback component which provides (generalized) 
correction forces to reduce errors in the motion caused by different reasons. Our approach 
is more general than that found elsewhere because the nominal time history is prescribed 

only with respect to the intrinsic coordinates qat , but not with respect to the external 

coordinates qa2 • 

We present a so-called augmented PD-control approach. The fundamental differential­
geometric concepts and methods of the Lagrangian multibody dynamics and of the 
nonlinear control theory are assumed to be known, [2, 3, 4]. 
Consider an n dof anthropomorphic multi body system. The representing point of that 
MBS moves in the n-dimensional configuration space Rn which becomes a Riemannian 

space vn by introducing a Riemannian metric gab and corresponding Christoffel symbols 

of the first kind r abc' The motion equations are Lagrange's equations of the second kind 

in explicit form: 

(4.1) 

Qa denote the generalized forces. The nominal submanifold Rm, m:= n - r, is defined 

by (3.1). 
It can be shown that Rm is a Riemannian submanifold vm also, but its metric depends on 
time, [3]. The task is to find a Lyapunov-stable position control law for tracking along Vm, 

o < m::; n, i.e. to define a control force Ra such that q( t) E vm or (q( t ), q( t )) E 

1'" vm, the tangent bundle related to vm. The motion equations (4.1) are divided into two 
parts with respect to the partitioning of the generalized coordinates 

qa1 ,qa2 denote the intrinsic and external coordinates, 

(4.2a) 

(4.2b) 

We regard R as reaction forces due to the constraints (3.1); their structure yields a force 
at 

control law which driN"es the system along the constraint manifold vm• Then, with respect 
to the special type of constraints (3.1) the augmented PD control law is given by 
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(4.3a) 

R - .. b1( ) ~a2[Q •• ~() r ·b .c] 
a1 - ga1~% t + ga1~g a2 - ga2~ % t - a2bc q q +(4.3b) 

r . b • c1 () r . b • c2 Q K . b1 C b1 + a1bc1q qo t + a1bc2Q Q - a1 - a1~e - a1~e. 

eht : = Qht - Q~ (t) denotes the error, K l. and C l. denote symmetric and 
alVI alUJ 

positive definite gain matrices characterizing the feedback component to reduce tracking 
errors. The remainder in (4.3b) describes the feed forward component of the control law to 
drive the system along ym. Here, the Yoronetz equations 

where are implicitly used. The corresponding online control 

scheme is shown in fig. 2. 

Initial state 

Man model 

n = 31, r = 25, m = 6 
R =0 

QJ 

Ra +Qa = La[q] (rf(t), rf(t)) 

I Rf.l) I 
Nonlinear feedforward ~ I 

t 
Reference I I 

rfol (t), q~l (t), ij~l (t) 
motion I I 

Rf.2) I + 
Linear feedback ~ I 

Figure 2. Closed loop control law of the diver model 
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Substituting R and (4.2b) into (4.2a) yields the error equation at 

[gatq (q) - gat~ (q) gb2a2 (q) ga2q (q)] eq + 

+ [ratbq (q) i/ + KatbJ eq + Catbt ebt = O. 
Using the matrix notations 

g == ( g atq g at~ J == ( UT 
ga2q ga2~ V 

:). 
- -1 T (f .b) g : = U - V . W . V , r : = a1bbl q , 

K:= (Ka\q), C:= (Catq ), e:= (eq ), 

we find that (4.4a) reads 

g e + (r + K) e + C e = O. 
Defining the function 

V( . ) 1 ·T-· 1 TC T-· e,e,q := 2e get 2e e+ £e ge 
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(4.4a) 

(4.4b) 

(4.5) 

where e denotes a small parameter we can show V > 0 , V < 0 along the trajectory 

given by (4.2) under the control law (4.3). 
The first statement is clearly correct for sufficient small e because C is assumed to be 

positive definite, and g denotes the inverse of the left upper submatrix of the block matrix 

g -I " ( VUT : r 1 whkh is positive definite. 

The second statement can be proved as follows: taking into account the skew-symmetry 

of u- 2y ,i.e. El(u- 2y)e= 0, we find from (4.5) 

V= eTge+ ~eTge+ eTCe+ E [eTge+ eT(ge+ ge)] = 

= -eT[('Y + K)e+ Celt ~eTge+ eTCe+ E [eTge+ eT(ge+ ge)]= 

'T[K 1 ( -1 T)' -]. TC T(':" K)' = - e + "2 v, w . V - E g e - E e e + E e g - 'Y - e. 
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V· 0 K 1 ( -1 T')· That means that < for sufficiently large K such that +"2 V· W . V 

remains positive definite, and sufficiently small e . Hence, V is a Lyapunov-function. In 

that case Ra is a Lyapunov-stable position control law. 
1 

The results of this procedure are shown in fig. 3. Indeed, the man model is moving along 

the manifold defined by the reference trajectory q~1 (t) thereby fulfiling the intrinsic 

constraints (conservation law of the angular momentum). 

Figure 3. Free flight of a diver from a spring board, showing the conservation 
of the total angular momentum 
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5. Summary 

The twisting somersault motion of a diver in free flight is simulated using a standard man 
model based on an anthropomorphic multibody system. The paper presents a Lyapunov­
stable dynamic control law of a tree-like n dof multibody system moving along an m­

dimensional submanifold (0 < m:::; n) given by a reference motion. The approach uses 

differential-geometric concepts and methods well-known from Lagrangian Multibody 
Dynamics. 
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As is known, the investigation of nonlinear equations describing the problem 

on oscillations of bounded objects is an important problem: 

a2u 
div[k(t, r)gradu]- q(t, r)u = p(t, r) at2 ' (1) 

In the case of variable coefficients k, q, p, depending on space coordinates 

r and time t such a system describes oscillation processes in an inhomogeneous 

medium. To that kind we can reduce problems on membrane oscillations, problems 

on electro-magnetic processes in non-conducting medium, problems on generation 

of electro-magnetic oscillations in closed hollow resonators and others. 

In this paper we cover basic moments of application of asymptotic methods 

of nonlinear mechanics to the investigation of propagation of nonlinear wave in 

systems with weak nonhomogeneity of geometric and temporaly types under the 

action of small perturbing forces. Consider the following nonlinear equation with 

slowly varying coefficients for one-dimensional case: 

au) 
ax ' 

(2) 

h . 't' 11 f ( au au). f' . were € IS a POSI Ive sma parameter, eX, et, lit, u, at' ax IS a unctIOn pen-

odic in lit with a period 27r satisfying all the conditions necessary for the construc­

tion of asymptotic approximation. 

Further, we denote eX = x, et = 
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au 
T, at 

au 
= Ut, ax = Utt, 
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a2U 
aX2 = UXX ' Then for c: = 0 and k, T as constant parameters the equation (2) 
is a well-known Klein - Gordon classical equation 

(3) 

where a = a(k, T), {3 = (3(k, T) are constant. 

Equation (3) will be considered further as an unperturbed equation corres­

ponding to the perturbed equation (2). 

A solution of equation (3) has the following form 

u(a, 'l/J) = acas'l/J, (4) 

where 'l/J = kx - wt + 'P, and a, 'P are constant, 'l/Jx = k, 'l/Jt = -w, 

(5) 

is a dispersion relation. 

For c: ¥- 0 we seek asymptotic approximate solution of equation (2) by using 

the general scheme of the asymptotic method in the form of the series 

where ~~ = v, the functions Ui(X, T, a, (), 'l/J) to be found are periodic in () and 'l/J 
with a period 211', 'l/J = kx - vt + '!9, c: ¥- 0, a and '!9 as functions of time t and the 
space coordinate x should be determined from the following system of equations: 

aa 2 at = c:Al(T, a, '!9) + c: A2 (T, a, '!9) + ... , 
aa 2 ax = c:Bl(x, a, '!9) + c: B2(X, a, '!9) + ... , 
a{) 2 at =-w+V+c:Cl(T,a,{))+c: C2(T,a,{))+ ... , 

(7) 

~: = c:Dl (x, a, '!9) + c:2 D2(x, a, {)) + ... , 

where Ai(T, a, {)), Bi(x, a, {)), Ci(T, a, {)), Di(x, a, {)) (i = 1,2, ... ) as the functions 

of a and {) periodic in {) with a period 211', which should be further determined. 

Evidently, for c: = 0 we can obtain a = canst, '!9 = -wt+ vt + 'P ('P = canst) from 
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the system (7) and the solution (6) which coincides with the solution (4) of the 

unperturbed equation (3) (Klein - Gordon equation). 

Further, for determining terms of the series (6) as well as the right-hand sides 

of the equations (7) we use the well-known scheme of construction of asymptotic 

solutions. We differentiate with respect to t and x the right-hand side of the 

series (6), taking into account equations (7) and substituting results into the left­

hand side of the original equation (2). The right-hand side of the equation (2) is 

expanded in powers of the parameter E (after substituting u, Ut, U x and expanding 

in Tailor series). Then equating the coefficients of the same powers of E on the 
left-hand and the right-hand sides we find the following equation for determining 

Ul(X, T, a, e, 'ljJ): 

where 

UlO,(W2 - 2UlO1/JVW + Ul1/J1/JW2 - a2(x, T)k2Ul1/J1/J + /32 (x, T)Ul = 

= fo(x, T, a, e, 'ljJ) - [88~1 (-W + v) + 2awCl + 2aka2(x, T)D l ] x 

[8Cl · ] xcos'ljJ - 8f) (-w + v)a + 2wA l + 2ka2(x, T)Bl sin'ljJ, 

fo(x, T, a, e, 'ljJ) = f(x, T, acos'ljJ, awsin'ljJ, -aksin'ljJ). 

(8) 

(9) 

For determining the right-hand sides of the system (7) in the first approximation we 

obtain from the finiteness condition of functions Ul (x, T, a, e, 'ljJ) the following sys­

tem of equations for determining Al (T, a, f)), Bl(x, a, f)), Cl (T, a, f)), Dl (x, a, f)): 

where 

271" 271" 

fi~)(x,T,a,f)) = 2~2 L:eiu '!9 J J fo(x,T,a,e,'ljJ)e-iu1/Jlcos'ljJded'ljJ, 
U 0 0 

271" 271" 

fi~)(x,T,a,f)) = 2~2 L:eiU '!9 J J fo(x, T, a,e,'ljJ)e-iu1/Jl sin'ljJded'ljJ, 
U 0 0 

'ljJl = 'ljJ - f). 

(10) 

(11) 
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Now we consider partial cases of equation (2). Assume that the right -hand 

sides of equation (2) do not depend on e. In this way we simplify the determination 

of the right-hand sides of system (7). Some of them do not depend on i). As 

a concrete example let us consider Klein-Gordon equation for a inhomogeneous 

medium 

a2u a {2 au} 2 at2 - ax a (x, t) ax + f3 (x, t)u = o. (12) 

If x and t are normalized for a certain length of a wave and a period we assume 

that 

a = a(cx, ct), f3 = /3(cx, ct). (13) 

Then, instead of equation (12) we consider an equation with slowly varying coef­

ficients 

a2u -2( )a2u f32( ) 2 -( )- ( )au at2 - a X,T ax2 + X,T u = ca X,T ax X,T ax' (14) 

h - aa 
were ax= ax. 

For c = 0, x = canst, T = canst, and hence a(x, T) = canst, /3(x, T) = canst 

the equation turns into the well-known classical wave linear equation with constant 

coefficients, namely Klein - Gordon equation 

a 2u _2a2u -2 
at2 - a ax2 + f3 u = 0, (15) 

which admits a solution of the form 

u = acas(kx - wt + cp), (16) 

where a and cp are constant and a wave number k and frequency w satisfy the 

dispersion relation 

(17) 

a'IjJ 
Denoting the phase function 'IjJ = kx - wt + cp, we obtain 'ljJx ax = k, 'ljJt = 

~~ = -w. Moreover, by differentiating relation (17) with respect to k we obtain 

the so-called group velocity 
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I dw 0;2k 
w - - - ----;:.=== 

- dk - J 0;2 k2 + ~2 w 
(18) 

We seek an asymptotic solution of the Klein - Gordon equation for inhomogeneous 

medium in the first approximation in the form 

u(a, 'ljJ) = acos'ljJ, 'ljJ = kx - wt + rp, (19) 

where a and rp should be determined from the system of equations 

(20) 

orp 20rp 
at w + a ox k = 0, (21) 

where (in the linear statement of the problem) the dispersion relation 

(22) 

and the compatibility condition 

kt + Wx = o. (23) 

should also be satisfied. 

Now we consider a dispersion relation in the case of inhomogeneous medium. 

According to our scheme of construction approximate solution, the changed wave 

number is k = k + rpx, and the changed frequency is w = w - rpt. 

Thus, substituting these values into the dispersion relation (17) for the un­
perturbed equation (15) we obtain 

(24) 

or, taking into account equation (21), as well as the systems (7) in the first ap­
proximation we have: 

(25) 

which differs from the dispersion relation (17) by the presence of the term of the 

second order of smallness which introduces (25) some additional terms depending 

on T = Et, x = EX, and a into the relation (25). 
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In the first approximation, the condition of compatibility also changes by 

a value of the second order. Actually, we have if;x = k + 'Px, if;t = -w + 'Pt 
(wave number k and a frequency w get components depending on x, T and a), 

ibxt = (k + 'Px)t, ibtx = (-w + 'Pt)x and hence, the compatibility condition will be 

or 

kt + Wx + 'Pxt - 'Ptx = O. (26) 

Taking into account the system (7) we obtain 

kt + Wx + !!.... (o'P) _ ~ (o'P) = 
ot ox ox ot 

Thus, in the first approximation the asymptotic solution of the equation (14) 

can be determined by the following relations 

u(a, ib) = acosif;, if; = kx - wt, (28) 

(29) 

(30) 

(31) 

(32) 

The relations (28)- (32) completely coincide with the results obtained by G.G. 

Uizem, but our results allow us to consider nonlinear cases and nonstationary 

processes. 

N ow we consider an example characterizing the influence of nonlinear per­

turbation on a wave process. For simplicity, we assume that external perturbation 

does not depend on e and there are no slowly varying parameters in the system. 
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Thus, we consider the first and the improved first approximation for the equa­

tion (for c: = 0, this is a well-known Bretherton equation): 

a2U a4u a2u 
at2 + ax4 + ax2 +u=c:!(u,Ut,ux ), (33) 

where f(u,ut,u x ) = u3 . 

A solution of this equation will be written in the first approximation 

u(t, x) = a(t, x)cos'¢(t, x), (34) 

where '¢(t, x) = kx - wt + <p(t, x) and the slowly varying amplitude a(t, x) and the 

phase <p(t, x) should be determined from the system of the first approximation 

211" 

aa ,aa c: J . -a + w -a = - !o(a, ,¢)szn'¢d'¢, 
t x 27rW 

o 
211" 

(35) 

a<p ,a<p c: J -a + W -a = -- !o(a, '¢)cos'¢d'¢, 
t x 27rwa 

o 

where w2 = k4 - k2 + 1 is a dispersion relation and w' = 2k3 
- k is a group velocity 

w 
(both for the linear equation (33) for c: = 0), fo(a, '¢) = a3 cos3 '¢. 

The improved first approximation, as usually in nonlinear mechanics, can be 

defined by the expression 

u(t, x) = a(t, x)cos'¢(t, x) + wI(a, '¢), (36) 

where wI(a,,¢) is calculated in accordance with the equations (8), and slowly 

varying amplitude a( t, x) and a phase <p( t, <p) are calculated in accordance with 
the equations of the first approximation. 

Consider the first approximation in detail. For UI (a, '¢) not to contain secular 

terms, the functions Al(a), Bl(a), G1(a) and DI(a) should satisfy the equations 

GI(a)w + (2k3 - k)Dl(a) = gl(a), 
2a 

where hI (a) and gi (a) are determined by the formulas 

(37) 

(38) 
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We have 

211" 

gl(a) = ~ J !O(a, 'lj;)cos'lj;d'lj;, 
o 

211" 

hl(a) = ~ J !O(a, 'lj;)sin'lj;d'lj;. 
o 

and in accordance with the equations (7) we can write 

A ( )dDl(a) = B ( )dCl (a) 
1 a da 1 a oa ' 

A ( ) dBl(a) = B ( ) dAl(a) 
1 a da 1 a aa . 

(39) 

(40) 

The equations (37), (38) and (40) represent 4 relations for 4 unknown func­

tions. As soon as these equations are solved and the right-hand sides of the equa­

tions (7) determining slowly varying a(t, x) and <p(t, x) are found, we can obtain 

ul(a, 'lj;). 
But in the general case we cannot solve the system of the first approximation 

(37), (38) and (40) without taking into account certain details and restrictions of 

physical problem. 

Having assumed that u(t, x) has sine-shaped oscillations for all t, we can put 

cCl (a) = <Pt(t,x) = 0 and cAl(a) = a(t,x) = 0, then 

1 
Dl(a) = 2(2k3 _ k)gl(a) (41) 

is a wave number displacement with respect to k (CD1(a) = <Px(t, x)) and 

(42) 

Otherwise, if we assume that for all x we have purely sine-shaped wave we can 

put cBl(a) = ax(t, x) = 0, CD1(a) = <Pt(t, x) = 0 and solve equations (37) and 

(38) with respect to CAl (a) = at(t, x) and cCl (a) = <Pt(t, x) the corrections for 

the amplitude and frequency displacement. 

Taking the Bretherton equation (the equation (33) with c = 0) as an example 

we now consider the way how the external perturbation affects the dispersion 
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relation established for a linear unperturbed equation. For the equation (33) (for 

e = 0) the solution is of the form (34) and the dispersion relation 

(43) 

is true. Assume, that Al(a) and G1(a) are equal zero.Then in the first approxim­

ation for e fo (a cos 'ljJ) = eu3 = w 3 cos3 'ljJ we obtain 

aa _ 0 
ax - , 

ar.p 3w2 

ax 8(2k2 - k)' 
(44) 

Let us calculate how the correction of the displacement of the wave number k 

affects the dispersion relation (43). To do that we must substitute k + r.px for the 

wave number k in the dispersion relation (43). We obtain 

w2 = (k + 8(2~~a~ k)) 4 - (k + 8(2~~a~ k)) 2 + 1 = 

4 2 3ea2 3 
=k -k +-4-+1+e .... 

(45) 

Thus, in the first approximation (to within values of order e) the dispersion 

relation for the perturbed model Bretherton equation (e f (u) = eu3 ) has the fol­

lowing form (under the assumption, that Al(a) = Gt{a) = 0) 

(46) 

In the first improved approximation, the perturbed Bretherton equation (under 

the assumptions mentioned above) has the form 

ea3 

u(t, x) = acos'ljJ + 32(9k4 _ 1) cos3'ljJ, (47) 

where 

( 3ea2 ) 
'ljJ= k+ 8(2k3-k) x-wt+r.p. (48) 

After simple calculations, under the assumptions imposed on Al(a), Bl(a) 

and G1(a), we obtain the following correction for the wave number k in the second 

approximation: 

ar.p 3w2 2 3a4 [1 3(6k2 - 1)] 
ax = 8(2k3 - k) + e 128(2k3 - k) 2(9k4 - 1) + (2k3 - k)2 . (49) 
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In conclusion, I would like to note that the method presented enables us to apply the 

asymptotic methods of nonlinear mechanics to the problem of studying Korteweg-de Vries 

equations with the further formulation of some new results of a complete investigation 

of wave processes. Stokes, in his studies that initiated the development of dispersive 

waves theory, obtained the following fundamental result : first, in nonlinear systems 

wave packets can exist; and second, a dispersion relation contains the amplitude. The 

dependence of this relationship on the amplitude leads to important qualitative changes in 

the solution behaviour and introduces not only new phenomena but numerical corrections 

as well. 

The purpose of my talk has been to focus scientists studying wave processes in vari­

ous fields of natural sciences on the possibility of successful application of the asymptotic 

methods to the investigation of wave equations under small perturbations. In my lec­

ture these methods were applied to the nonlinear Klein - Gordon equation was already 

considered by David Montgomery in connection with a solution of one wave problem in 

plasma by means of the asymptotic methods of nonlinear mechanics but our considera­

tion is more general (perturbation depends both on r and x). More precise solutions and 

corrections in dispersion relations were obtained. I also restricted myself to the formal 

approximate solution of already obtained equations, not going into the physical meaning 

of these equations. 
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SOME PROBLEMS ON NONLINEAR OSCILLATIONS 
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19 Le Thanh Tong, Hanoi, Vietnam 

1. Introduction 

This paper presents our research on the interaction between nonlinear oscilla­
tions, Van-der-Pol's systems subjected to complicated excitations and quasilinear 
oscillations in systems with large static deflections [1-4]. It is well known that 
there is always an interaction of some kind between nonlinear oscillations, namely, 
between the forced, parametric and self-excited oscillators. Each of these oscilla­
tors demonstrates definite sustained oscillations, comprising one or a combination 
of several modes. The principal questions to be answered are: What will happen 
if these oscillators are coupled in some manner? Does a resultant nonlinear oscil­
lation exist and is it stable? The stationary oscillations and their stability have 
been paid special attention. 

2. Interaction between External and Parametric Excitations 

In this section, we examine some quasilinear oscillating systems subjected to 
external and parametric excitations. We restrict ourselves to a class of quasilinear 
systems with two excitations. The following systems have been considered: 

The system with external excitations in principal resonance and parametric 
excitation of the first degree in subharmonic resonance of the order one-half: 

x + w2x = c{~x - hi; - "(x3 + 2pxcos 2wt + ecos(wt + a)}. (1) 

The system with interaction between an external excitation and a parametric 
excitation of the second degree, both in the principal resonance : 

x + w2x = c{~x - hi; - "(x3 + 2px2 coswt + ecos(wt + "()). (2) 

The system with interaction between an external excitation in principal res­
onance and a parametric excitation in subharmonic resonance: 

x + w2 x = c{~x - hi; - "(x3 + 2px3 cos 2wt + ecos(wt + a)}. (3) 

141 
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The interaction between two parametric excitations of the first and third 
degree: 

x + W 2 X = c{.6.x - hi: - ,X3 + 2pxcos 2wt + 2qx3 cos 2(wt + a)}. (4) 

The interaction between two parametric excitations of the first and second 
degree: 

x + W 2X = c{.6.x - hi: - ,X3 + 2pxcos 2wt + 2qx2 cos 2wt}. (5) 

We now examine in more detail the equation (3) for a = O. Its solution is 
found in the form [1] : 

x = a cos 'ljJ, i: = -awsin'ljJ, 'ljJ = wt + (). (6) 

The averaged equations are 

{
a = ~~ fo = ~~ {hwa + ~pa3 sin2() + esin()}, 

. -c -c { ( 3,) } (7) 
a() = 2w go = 2w .6. - 4a2 a + pa3 cos2() + ecos() . 

The amplitude and phase of stationary oscillations satisfy the equations: 

f = efo - pa3 it = ° ; g = ego + 2pa3g1 = 0; (8) 

where 
1 

fo = hwa + 2pa3 sin 2() + e sin () = 0, 

go = (.6. - 37 a2 )a + pa3 cos2() + ecos() = 0, 

it = fo cos () - go sin (), gl = fo sin () + go cos (). 

We can write 

where 

{ 
f = A sin () + Bcos() - E = 0, 

g = G sin () + H cos () - K = 0, 

A = e2 - pa4 [pa2 - (.6. - 37 a2 )] = T + pa4 X, 

X =.6. - 37 a2 + 3pa2 , T = e2 - 4p2a6 , 

(9) 

(10) 

H = e2 + 2pa4 [pa2 + (.6. - 37 a2 )] = T + 2pa4 X, (11) 

B = -2phwa4 , E = -ehwa, G = 4phwa4 , K = -eaX. 

The transformation of the original equations (fo, go) into the associated ones 
(f, g) has the matrix: 

{} { e - 2pa3 cos() pa3 sin() } 
T = 4pa3 sin () e + 2pa3 cos () . 
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This matrix has an important characteristic; its determinant denoted by T depends 
only on a (and also 6, in general) 

Hence, in the plane R(6, a2 ) we can identify two regions: 

- The equivalence region satisfying T -=J 0 ar a6 -=J 4~2' 
2 

- The non-equivalence region determined by T = 0 ar a6 = 4ep2 = a~. 

In the equivalence region, the original equations (fo,90) and the associated 

equations (f, 9) are equivalent. Therefore, the corresponding parts of the original 

resonance curve Co and the associated resonance curve C coincide. 

The non-equivalence region is only a line. For the system under consideration, 

it is a straight line which is parallel to the abscissa axis 6 with the ordinate a;. 
The non-equivalence line is a branch of the associated resonance curve C. It is not 

a branch of the original resonance curve. Almost all of this curve contains strange 

elements which belong to C, but do not belong to Co. The method for determining 

the original resonance curve Co is to determine the associated resonance curve 

C then exclude the strange clements. Resonance curves for the systems with 

and without friction are presented in Figure 1 (for h = 0) and Figures 2, 3 (for 

h = 0.003) and (h = 0.27). The amplitude curves in Figures 1,2 are similar to 

those of the interaction between linearly parametric and forced oscillations [1]. 

~. I' a~t 

I 06D~ 
060[ ~! 

T=O l~~~ 
0.00 1---

i . 0.00 I 
i • -0.10 0.10 6.=0 -0·10 !:::,. 

Figure 1. Resonance curves for the system Figure 2. Resonance curves for the system 
without friction. with friction: h = 0.01. 
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The amplitude curves in Figure 3 characterize the nonlinear system under 

consideration. For small values of amplitude ao, the forced component dominated 

the other components and the corresponding parts of resonance curves are similar 

to those of forced oscillation. For large values of ao the influence of the parametric 

component is clear and as a result of the interaction between two oscillations, the 

resonance curve has the form of a upward parabola. 

aZ 
o 

0.60 4 

:'r ,~i . f "./ 
" "/1 , /,'/ 
: ".' I 
: I .,/: I 
, '~ .'/ 

i ~~ ",~I 
~'" . " .' ,I 

r------ T~O 

<:... 0.00 +c==r----,--,.:=r...,--,--
-O.fO O.fO 

Figure 3. Resonance curves for the 
system with friction:h= 0.027. 

Cl-2!L - 4 

2 

Figure 4, Resonance curves for equation (1). 

Typical resonance curves for os­

cillating systems are given in Figure 

4 ( for equation (1)), Figure 5 (for 

equation (2)) Figure 6 (for equation 

(4)) and Figure 7 (for equation (5)). 

o 

i 3-...,..:;~~ 
Z~II 

1 "";, /' ,0<;:1 
t '-........... '''''''' 

____ ~~_----- D" 
3 ........ /1./1" 

I" 2. if 1 
I' I - ----------- D 

0.1 A 

Figure 5. Resonance curves for equation(2). 
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0.10 

O~+-----~~r-~--­

-0.02 0.00 

Figure 6. Resonance curves for equation(4). Figure 7. Resonance curves for equation(5). 

3. Van-der-Pol's Systems Subjected to Complicated Excitations 

Different kinds of resonance curves of stationary processes and the intermedi­

ate forms of the resonance curves have been examined with the aid of a computer. 

The systems under consideration are: 

Van-der-Pol's system under the parametric excitation of the first degree and forced 

external excitation described by d.e.: 

x + w2x = c{.6..x + h(l - kx2)± + 2px cos 2wt + e cos(wt + a)}. (12) 

Typical forms of the resonance curves are shown in Figures 8 and 9. 

Figure 8. Resonance 
curves for a =0 and 
for e=o (curve 0), 
e=0.0150 (curve 1), 
e =0.0177 (curve 2), 
e=0.0500 (curve 3), 
e=o.lOOO (curve 4), 
e =0.1200 (curve 5). 
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5, 

c' 0.2 

Figure 9. Resonance 
curves for a = 7r /4 
and for e =0 (curve 0), 
e= 0.0400 (curve 1), 
e= 0.0483 (curve 2), 
e= 0.0500 (curve 3), 
e= 0.0516 (curve 4), 
e= 0.0550 (curve 5), 
e= 0.0648 (curve 6), 
e= 0.0980 (curve 7). 

Van-der-Pol's system subjected to the parametric excitation of the second degree 
and external excitation: 

x + w2x = E{~X + h(1 - kX2)x + 2px2 coswt + ecos(wt + a)}. (13) 

Typical resonance curves are given in Figures 10 and 11. 

-0.10 0.00 0.10 

Figure 10. Resonance curves for a = 7r 
and h= a (curve 1), h = 0.03 (curve 2), 
h= 0.05 (curve 3). 

-0.10 0.00 

Figure 11. Resonance curves for 
7r =I- a E {567l', 7;} and h= 0 (curve 1), 

h = 0.006 (curve 2), h= 0.02 (curve 3), 
h = 0.05(curve 4). 

Van-der-Pol's system subjected to the parametric excitations of the first and third 
degrees: 
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Some typical resonance curves are presented in Figures 12 and 13. 

~: elf 
1 

0.50 

1.00 --- ----- - ----- -------0' 

0.00 0.00 --tL-f---,-r=t--r-'T'-,......,.+4. 
1::. -0.04 0.00 

Figure 12. Resonance curves for p= 0.05 , 

q= 0.1 , 4< k <8 and h= 0.0300 (curve 1), 

h=0.0500 (curve 2), h=0.0550 (curve 3), 
h =0.0666 (curve 4), h = 0.0800 (curve 5). 

-0.05 0.00 

Figure 13. Resonance curves for k=8 and 
h=0.04 (curve 1), h= 0.05 (curve 2), 
h= 0.06 (curve 3). 

Van-der-Pol's sytem with variable nonlinear friction described by d.e. 

x + w2x = {w~x + h[l - k(x + qcoswt)2]X}. (15) 

Typical resonance curves arc shown in Figure 14 

q=1.63 

-1.50 
. : ..... " ..... 

-0~50 0.50 
-1.00 

(a.) 

Figure 14. Typical reso­
nance curves of equation (15), 
where" st" is stable branch . 
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4. Quasilinear Oscillations in Systems with large Static deflections 

In mechanical systems the static deflection of the elastic elements is usually 

not apparent in the equations of motion. The reason is that either a linear model 

of the elastic elements or an assumption of too small static deflection was accepted. 

In the present section both a nonlinear model of elastic elements and their large 

static deflection are considered, so that the nonlinear terms in the equation of 

motion appear with different degrees of smallness. In this case the nonlinearity 

of the system depends not only on the the nonlinear characteristic of the elastic 

element but on its static deflection. 

Let us consider the simplest oscillatory system which consists of a mass M 

and a spring as shown in Figure 15. The spring supporting the mass is assumed 

to be nonlinear with the characteristic 

so that the spring force acting on the mass M is 

3 co(6 - x) + (30(6 - x) , 

(16) 

where 6 is the deformation of the spring in the static equilibrium position. When 

x = 0, the spring force c06 + {3063 is equal to the gravitational force Mg. That 

is: 

c06 + {3063 = Mg. 

-x=o 

Figure 15. Oscilatory system with large static deflection. 
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We have the equation of the mass M in the form : 

It is supposed that ~ is large and x small enough, so that in comparision with 

the linear term, f3ox 3 is a small quantity of second degree and f30~x2 is of the first 

degree of smallness : 

~ = O(E), f3ox3 = O(E2), f30~x2 = O(E), 

where E is a small positive parameter. In this case f30~x2 is finite. Taking into 

account the viscous damping force hoi: and the exciting force P(t, x) which are 

both assumed to be small quantities of second degree and introducing the notation: 

2 Co + 3f30~2 
w =---­

M ' 
2f3 _ f30 

E - M' 

2 1 
E f(t, x) = MP(t, x), 

we can write the equation of motion of the mass in the form: 

(17) 

(18) 

In comparision with the classical Dulling's equation, in equation (18) the small 

terms appear with different degrees; most of them are of second degree of smallness. 

From the structure of the equation (18) one can predict that the influence of the 

forces on the motion of the mass M can be found in the second approximation of 

the solution. A more general equation has also been investigated: 

(19) 

The most interesting phenomenon in the systems under consideration is that 

their nonlinearity depends not only on the nonlinear characteristic of the spring 

as in the classical theory, but also on the static deflection~. Namely, if the 

spring has soft characteristic (f3 < 0) (curve 3, Figure 16), then the system under 

consideration also belongs to the soft type with more soft characteristic, because 

3 5,2 
a = -f3- - < O. 

4 6w2 
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When the spring has hard characteristic (fJ > 0), the system under consideration 

belongs to the hard type if a > 0 or Co > 7fJob..2 (curve 1, Figure 16) and to the 

soft type if Co < 7fJob..2 and to the neutral type if Co = 7fJob..2 (curve 2, Figure 16) 

~ 
~ 

\ 
~ 

\ 
\ 

\ 
\ 

\ 
\ 

3 \ 
\ 
\ 
\ 
\ 

0.1 

Figure 16. Stationary resonance curves of equation (18). 

In addition to (19) the following problems have been considered: 

The effect of e2-order due to the interaction between the excitation of e-order in 

systems described by the equations: 

x + w2x = ere cos(2wt + X) + 2px cos wt] + 102 (b..x - 2h± - ')'x3 ), (21) 

The effect of e2-order caused by the interaction between the nonlinear restoring 

clement and parametric excitation of e-order in systems: 

(23) 

(24) 

(25) 

The interaction of elements with two different orders in systems : 

(26) 
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!1 = 2px cos 2wt, h = e cos wt; 

x + w2x = 2pcxcoswt + c2 [6.x - hi; + 2qxcos 2(wt + u)], (29) 

x + w2x = c(ax2 + qcos 2wt) + c2 [6.x - 2hi; - (3x3 + r cos(wt -1])]. (30) 

x + w2x = cpxcoswt + c2 [6.x - 2hi; - (3x3 + rcos(wt -1])]' (31) 

(32) 

5. Conclusion 

In this report, the interaction between external and parametric excitations, 

Van-der-Pol's systems subjected to complicated excitations and quasilinear oscil­

lations in systems with large static deflections have been studied. The asymptotic 

method in combination with the numerical method and a computer have been used 

to study the stationary oscillations and their stability. The amplitude frequency 

curves (resonance curves) of the systems under consideration are various, and the 

nonlinear characteristics are markedly changed in both quality and quantity in 

comparision with classical systems. 
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STATIONARY AND TRANSIENT PROCESSES IN OSCILLATING SYSTEMS 
WITH TWO DEGREES OF FREEDOM SUBJECTED TO PARAMETRIC AND 
FORCED EXCITATIONS 

NGUYEN V AN DINH and TRAN KIM CHI 

Institute of Mechanics, Hanoi 

264 Doi Can Street, Ba Dinh, Hanoi, Vietnam 

1. Introduction 

In the present paper, the interaction between forced and parametric oscillations in a 
system of two degrees of freedom is considered. The main attention will be paid to some 
typical forms of the resonance curves [1], [3]. For stationary oscillation, the singular 
points have been used to identify the resonance curves (paragraph 3). The transient 
passages through the resonance are considered. These processes still have typical 
characteristics of nonlinear purely forced systems [2]. The presence of the indirect 
parametrically - excited components introduces special features of the resonance curves 
(paragraph 5). 

2. The system under consideration 

Consider a quasi-linear oscillating system with two degrees of freedom described 
by the differential equations 

x + A,zX + d?(hox + ax3 + c/x) = Qsin vt , 

ji + y + &(hy + pl + bx2y) = &pcos(vt + 5), (1) 

where ho > 0, h > 0, b > 0, p > 0, p> 0, a, c, Q, 5 are constants, and & is a small 
parameter (the case h = 0 has been considered in [3]). Assuming that the frequency v is 
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far from the frequency A. of the mode x , but near that of the mode y, we introduce the 
detuning parameter: 

The oscillations are found in the form 

x = qsinvt + al cos (At + If/l ), 

X= vqcosvt -Aa1 sin (At + If/l)' 

y = acos(vt + If/), 

y = - va sin (v t + If/) , q = Q 
,12 _ v 2 

The averaged differential equations are 

. SA h 
al =-- ,'Oal' 

2 

. S V I' S V {h b 2 . 2 . ( s:")} a =--JO=-- v a+-q asm If/+psm If/-v , 
2 2 4 

. sv S v 3 2 b 2 b 2 
alf/ =-go=-{(-jJa +-q +i1)a--q acos21f/-pcos(If/-b')}. 

2 2 4 2 4 

(2) 

(3) 

(4) 

The oscillation in the system can be explained as follows: the non-resonance 
oscillation in x, through mixed cubic non-linearity, parametrically excites y and 
produces combined oscillation in y. The intensity of the indirect parametric excitation 

is characterized by the coefficient !!.- q2 . 
4 

3. Stationary oscillations 

In this paragraph, we briefly mention some typical cases of stationary oscillations, 
corresponding to the transient passages through resonance which will be investigated in 
the paragraph 5 (other cases were considered in detail in [1], [3]). 

By setting the right hand side of (4) to zero, we obtain the equations for stationary 
oscillations: 

- for the mode x : 

- for the mode y : 10 = 0, go =0. 

The last two equations can be transformed into 

I == 10 sin If/ - go cos If/ = A sin If/ + B cos If/ - E = 0, 

g == 10 cos If/ + go sin If/ = G sin If/ + H cos If/ - K = 0, (5) 
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where: 
3 2 b 2 b 2 A = vha, B=-(-pa + -q + L'l- -q ) a, E=- pcos5, 
424 

G= (~pa2+ ~l+ L'l + ~q2)a, H=vha, K=psin5. 
424 

The frequency - amplitude relationship is of the form 

W = Df + Di - D~ , 

where Do = I~ :1, Dl = I~ :1, D2 = I~ ~I· 
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(6) 

(7) 

From (6) the resonance curve can be identified. In general, it consists of two parts: 
the regular part C1 and the critical part C2 • 

The regular part C1 lies in the regular region: 

Do ,..,0. 

The critical part C2 lies in the critical region Co: 

Do =0, 

and satisfies two following conditions 

- the compatibility condition (deduced from (6), (9» 

Dl =0, D2 =0, 

- the solvability condition of the trigonometric system (5): 

(8) 

(9) 

(10) 

(11) 

For h > 0 and for suitable 5, the critical part C2 exists and consists of a single 

singular point I. (v; ,a.) with coordinate (v;, a.) in the plane (v 2, a) determined from 

the equalities 

b 2· 2" v. =--q sm u, 
4h 

3 2 2 b 2 b 2 -fJa. =(v. -l)--q --q cos25 >0, 
4 2 4 

and a. must satisfy the condition 

2 4p2 a; ~ ac = 24". 
b q 

(12) 

(13) 

It is easy to see that if a; > a; , I. is a nodal point; if a; = a; , I. is either a returning 

point or a degenerated nodal point; if a; < a;, I. is an isolated point (I. does not belong 
to the resonance curve). 
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Depending on the change of the parameters, different forms of the resonance curves 
can be obtained [3]. 

If the indirectly - excited parametric oscillation does not exist (large h, small ~l), 

the critical region Co lies under the axis v2 (i.e. there is no critical part C;) and the 
resonance curve is similar to that of the purely forced oscillation, except, it may exist as 
a "crevasse". 

a 

, , 

1,C" " , , ' 
, , I 

'2~ 

Figure 1: h = 0.0915, p = 0.11759, !!..l = 0.1, l P = 0.1. 
4 4 

The resonance curves I, 2 correspond to 8 = !!.. , 371" ,respectively. 
2 4 

When the indirectly parametric excitation is intensive enough, then for small p, the 
resonance curve consists of two branches: the upper C' and the lower C", lying above 

and under Co respectively. If a; > a;, C' and C" are joined at point I. and the resonance 

curve has a loop (Figure 2a). If a; < a; , C' and e" are separated by Co , and e" has the 
form of an oval (Figures 3a, 3b). 

As p increases, the upper branch moves up, while the lower branch becomes 

I 
narrower. When p reaches the value "2bqa2, the loop disappears, and the nodal 

point I. changes into a returning point (Figure 2b). At a certain value p, the oval 

disappears too. 

As p increases further, the resonance curve becomes similar to that for no 
indirectly excited parametric oscillation (Figures 2c, 3c). 
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1.17 
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v2 

2b: p=O.11759 
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2c: p=0.15 

a 

1.0 

0.5 

c' 

Figure 3a: p=O.004 

I , 
? c'"' I " 

I 
I 

I 
I 

I 

/0l 
.: Co.' '---

O. 0(H=----,~r-,---,---r--~---,--,-'"7'V2 
1.15 1.25 

Figure 3b: p=0.005 

Figure 3c: p=0.007 

correspond 
31l' b 2 3 

to the parameters: J = - , h= 0.009, -q =0.1, -/3=0.1. 
4 4 4 

correspond 21l' b 2 3 to (he paramc(crs: 0 = - , h = 0.0877. -q =0.1, -13 = 0.1. 
3 4 4 
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1. Stability condition 

Since ho > 0, then al ~ 0, we have to study only the stability character of the 
mode y. Sufficient conditions for asymptotic stability of the oscillation under 
consideration are as follows: 

S = aa/o + ago = 2avh >0 
1 aa alfl ' 

(14) 

S2=lfo ago_ a/o ago >0. 
aa alfl alfl aa 

(15) 

With h > 0, v > 0 the first condition is automatically satisfied. For the regular part 

C1, the condition (15) can be transformed into 

_1_ aw > 0 W = Dr + Di - D~ , 
Do aa ' 

(16) 

from which, ordinary stable portions bounded by vertical tangents can be determined. 
The stability character of the critical nodal point I. is directly deduced from that of the 
ordinary portion, considered as containing it. 

In the figures presented above, heavy (broken) lines correspond to stable (unstable) 
stationary oscillations. 

s. The transient passages through the resonance 

To study the transient passages through resonance, we consider the last two 
equations of the system (4), that is, the following equations (a *- 0): 

. BV fi BV {h b 2 . 2 . ( ")} a =-2 0 =-2 v a+ 4q asm 1fI+ psm lfI-u , 

. BV B V 3 2 b 2 b 2 
alfl = - go = - {(- f3a + -q +fl)a- -q acos21f1- pcos(IfI-O)} (17) 

2 2 4 2 4 

We suppose that the frequency v of the external force is a function of time t and that 

the derivative of v with respect to time t (dv) is proportional to B . For simplicity, we 
dt 

take 
v=vo+at, a=O(B). (18) 

To construct the curves describing the amplitude changes with different speeds of 
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passing through resonance, we substitute v by its expression (18) into equations (17), 
then we integrate these equations by using the Runge-Kutta method. 

Figures 4a, 4b, 5a, 5b, 5c, 6a, 6b show the results. From these figures we draw the 
following conclusions: The passage through resonance of the non-linear system 
subjected simultaneously to forced and parametric excitations still has typical 
characteristics of a nonlinear forced system [2]. Namely, by increasing the speed (a) of 
passing through resonance, the maximum amplitude decreases and the sharpness of the 
first extremum of the resonance curve is smaller than that of the corresponding 
stationary resonance curve. If the passage through resonance is faster, then this 
sharpness decreases. 

The presence of the indirect parametrically - excited component introduces special 
features not only for the stationary resonance curves, but also for the passage through 
resonance. The common feature of this process is that the resonance curves decrease 
strongly after reaching maximum. Near small enough amplitudes, the resonance curves 
are attracted to and asymptotically reach the stationary resonance curve. ll1is 
phenomenon takes place for both processes of increasing (a > 0) and decreasing 
(a < 0) the frequency of the external force. 

If the indirect parametric excitation does not exist (when h is large, ~l is small), 
4 

the resonance curves (also in the case of stationary oscillations (Figure 1» have forms 
which are similar to purely forced oscillations. That is, after reaching the first 
maximum, the resonance curve has some extrema with smaller amplitUdes. The 
oscillation has a damped characteristic. The parametrically excited component makes 
more sudden changes of the resonance curves and, finally, these curves reach 
asymptotically to the stationary resonance curve. In Figures 4a, 4b, curves 1, 2, 3 
correspond to the process of increasing the frequency of external force (a> 0), 
and curves 4, 5, 6 correspond to the inverse process (a < 0). The parameters for 
Figures 4a, 4b are the same as for Figure 1. 

a 
1. a = 0.001 

2. a=0.004 

2.0 3. a =0.006 

4. a = - 0.0001 

5. a = - 0.0006 

6. a=-O.004 

o=~ 
2 

0.OO+=----,--.,-----r-----.---r--...::..::....:~;L1~~~l/2 
0.80 1.40 2.00 

Figure 4a 
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1. a = 0.0001 

2. a =0.001 

3. a =0.002 

4. a = - 0.0001 

5. a=-O.OOI 

6. a=-0.002 

0.00 -t---,---,---,---,---,---,---.--,----,---~1J2 
0.80 1.20 1.60 

8 = 3n 
4 

Figure 4b 

With the parametric excitation large enough, with p small enough and a~ > a~ 
(the stationary resonance curve has singular point I. as a node), the resonance curves 
decrease strongly after reaching the first maximum. Then, these curves have another 
maximum with very small amplitude and asymptotically reach the stationary resonance 
curves (curves 1, 2, 3 in Figure 5a correspond to the parameters of Figure 2a). 

When p has reached the value !bq2a., node I. becomes a returning point, and the 
2 

change of resonance curves is smoother. The r~sonance curves decrease slowly after 
reaching the first maximum. Some extrema appear with smaller amplitudes (see curves 
I, 2, 3, Figure Sb). Increasing p further until the forced excitation dominates the 
parametric excitation, the resonance curves have the form of those for purely forced 
oscillation. However. the parametric excitation still has influence. This excitation 
makes the resonance curves asymptotically reach the stationary resonance curve (see 
curves I, _2. 3 in Figure 5c). 

In the inverse process (a < 0) the first two maxima of the resonance curve are very 
clearly expressed and the first maximum is connected to the existence of the loop or the 
crevasse. With parametric excitation large enough and with small P. the vertices of the 

extrema are nearly based on the left branches of the stationary resonance curve. After 
reaching two maxima. the resonance curve decreases monotonically (see curves 4. 5, 6 
in Figure Sa). Increasing p, the vertices of the extrema move to the left and. 

finally, asymptotically reach the stationary resonance curve (see curves 4. 5. 6 in 
Figures 5b. Sc). 
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a 

1. a = 0.00001 

2. a = 0.0001 

0.60 3. a = 0.00027 

4. a = - 0.00001 

5. a = - 0.0001 

6. a = - 0.0003 

0.00 y2 
0.95 1.20 1.45 

Figure 5a 

a 

1. a =0.0001 

2. a =0.001 

3. a = 0.002 
0.90 4. a = - 0.0001 

5. a=-O.OOI 

6. a=-0.002 

0.00 y2 
0.80 1.20 1.60 

Figure 5b 

a 

1. a =0.0001 

2. a =0.001 
3. a = 0.002 

0.90 4. a = - 0.0001 

5. a=-O.OOI 

6. a =-0.002 

0.00 I y2 
0.85 1.25 1.65 

Figure 5c 

With the parameters corresponding to Figures 3b, 3c (when a; < a; and I. does not 
helong to the stationary resonance curve) we can see that the resonance curves decrease 
quickly and asymptotically reach the stationary resonance curve, independently of the 
relationship between the intensities of parametric and forced excitations. The vertices of 
the extrema are nearly based on the stationary resonance curve. With increasing 
(decreasing) the frequency of external force, these vertices are based on the right (left) 
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branch of the stationary resonance curve (see curves 1, 2, 3 in Figures 6a, 6b for 
increasing v , and curves 4, 5, 6 for decreasing v ). 

a 

0.80 
1. a = 0.00001 

2. a = 0.00006 
2 3. a = 0.00007 

4. a = - 0.00001 

5. a = - 0.00003 

6. a = - 0.00007 

0.95 1.10 1.25 

Figure 6a 

a 

1. a = 0.00001 
0.80 2. a = 0.00006 

3. a = 0.00009 

4. a = - 0.00001 

5. a = - 0.00005 

6. a = - 0.00009 

0.95 

Figure 6b 

In Figures 4a, 4b, Sa, 5b, 5c, 6a, 6b, 6c the continuous lines correspond to the 
transient passages through resonance and the broken lines correspond to the stationary 
resonance curves. The dotted lines are curves Co. 

6. Conclusion 

The interaction between forced and parametric oscillations in a system with two 
degrees of freedom has been investigated for both stationary and non-stationary 
processes. The appearance of the parametrically excited component introduced special 
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features in the resonance curves. For stationary oscillation, the singular points have been 
used to identify the resonance curves. In the passage through resonance, the resonance 
curves have fundamental characteristics of purely forced oscillations. The parametric 
excitation introduces a distinguishing character of the resonance curves: after reaching 
the maximum, the amplitude of oscillation decreases very quickly and finally tends 
asymptotically to the stationary resonance curve. 
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1. Introduction 

It is well known that the response of a mechanical system depends on the type of excita­
tion, or energy source, as well as on the natural frequencies of the system, the order of 
nonlinearity, and the type of damping mechanism. 

Concerning the excitation, two types are often considered: (1) the excitation appears 
as an inhomogeneous term in the equations governing the system motion, and (2) the 
excitation appears as a time-varying coefficient in the governing equations of motion. 
The first type, which is called an external excitation, is the cause of forced oscillations. 
In this case, a small excitation cannot produce a large response unless the frequency of 
the excitation is close to one of the natural frequencies of the system, which is called a 
primary resonance. The second type, which is called a parametric excitation, is related 
to the dynamic instability and parametric oscillations of a system. In contrast to the 
preceding case, a small parametric excitation can produce a large response when the 
excitation frequency is close to twice one of the natural frequencies of the system, 
which is called a principal parametric resonance. 

Considering the nonlinearity of a system, it is known that this property can occur for 
both discrete and continuous systems. For the former, exact solutions are quite limited; 
most of the analyses deal with weakly nonlinear systems which are amenable to pertur­
bation methods. For strongly nonlinear systems, recourse is often made to geometrical 
methods to obtain a qualitative description of the behavior of the system, to perturbation 
techniques for which a basic nonlinear solution exists, or to numerical analysis. For the 
latter, since exact solutions are generally not available, recourse is made to approximate 
analyses by using analytical techniques, numerical methods, and numerical-perturbation 
techniques. 

It is also known that governing equations with quadratic and/or cubic nonlinearities 
are associated with many physical systems. Flat plates, for which stretching is signifi­
cant, possess cubic nonlinear terms [1-4]. The presence of nonlinear terms has an 
important influence upon the behavior of the system, especially under a condition of 
internal resonance. As is shown in [3], when a parametric resonance is excited in the 
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presence of an internal resonance, the coincidence of the two types of resonances will 
give rise to simultaneous resonances. These kinds of resonances are characterized by the 
fact that several modes may exist in the response, even though only one mode is directly 
excited by the excitation. Internal resonance is responsible for this phenomenon and, as 
a consequence, for a significant transfer of energy from the directly excited mode to 
other modes of vibration. 

This work deals with parametrically excited systems possessing cubic nonlinearities. 
The nonlinear temporal equations of motion are analyzed using the method of asympto­
tic series expansion developed by Mitropolskii [5], and the method of multiple scales 
popularized by Nayfeh [6, 7]. Attention is focused on both principal parametric resonan­
ce and simultaneous resonances. Numerical evaluation of the solutions was performed 
in order to get more insight into the differences between the two techniques. 

2. Nonlinear Temporal Equations of Motion 

Consider a parametrically excited system having a single degree of freedom, a cubic 
nonlinearity and linear viscous damping; the temporal equation of motion is governed 
by 

(1) 

where C is the coefficient of linear viscous damping, (j) the natural frequency of the 

system, f..i the excitation parameter, (J(t) total phase angle of the harmonic excitation, 

i.e., B(t) = A the instantaneous excitation frequency, and Y the coefficient of the non­
linear (cubic) term. 

In contrast with the above system, which has only a single natural frequency and a 
single mode of vibration, an n-degree-of-freedom system has n natural frequencies and 
n corresponding modes. For simplicity, the set of differential equations of motion is 
represented by a two-degree-of-freedom system as follows: 

.. 2 2' 2 2 (J (3 2 2 3) 
Xl + {j)l Xl = - ClXl + f..il{j)l cos Xl - YllXl + Y12 Xl X2 + Y13 Xl X2 + Yl4 X 2 

X2 + {j)i X2 = -2C2X2 + 2f..i2{j)i cos (J X 2 - C 'Y 2 .. -) 

(2a) 

(2b) 

The second-order nonlinear differential equations with periodic coefficients (1) and 
(2) may be considered as extensions of the standard Mathieu-Hill equation. Equation (1) 
is used for analyzing the principal parametric resonance associated with any single 
spatial form, and equations (2) for studying simultaneous resonances involving two 
modes of vibration. 

3. Solutions of the Temporal Equations of Motion 

3.1. FIRST-ORDER ASYMPTOTIC APPROXIMATION 

If the present system is weakly nonlinear, i.e., the excitation, the damping and the non­
linearity are small, and if the instantaneous frequency of excitation and the load parame­
ter vary slowly with time, equation (1) can be rewritten as 
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x + 0/ x = 6{2Ji(()2 COS () X - 2cx _]'X3] (3) 

where & is a small parameter, for which r = &t represents the slow time. 

Confining ourselves to the first order of approximation in &, we seek a solution of 
equation (3) in the form 

x = a(r)coslfI(r) 

where a and IfI are functions of time defined by the system of differential equations 

a = &AI (r,(},a,1fI), 

rf = (()(r) + &B1(r,(},a,IfI). 

(4) 

(5a) 

(5b) 

Functions A1(r,(},a,lfI) and B1(r,(},a,lfI) are selected in such a way that equation (4) 
would, after replacing a and IfI by the functions defined in equations (5), represent a 
solution of equation (3). 

Following the general scheme of constructing asymptotic solutions for vibrating 
systems, Nguyen [8] finally arrived at a system of equations which completely describes 
the nonstationary vibrational process. The stationary response associated with the 
principal parametric resonance A "" 2(() may be calculated as a special case of the non­
stationary motions, and is given by 

(6) 

where ~ = 2Jrc/(() is the decrement of viscous damping and s = (A/2(() -1 the detuning 
parameter. It is evident from (6) that the "±" sign upon the inner radical indicates the 
possibility of two nontrivial solutions. 

The base width of the stationary response is the only region in which vibrations may 
normally initiate. By setting a = 0 in equation (6), one obtains 

(7) 

This expression makes it possible to locate in the (Ji, s) parameter space the boundaries 
of principal parametric instability region. Moreover, combining the expression 

(8) 

calculated from the limited condition of the inner radical of (6), with the cut-off value of 
the excitation parameter 

(9) 

calculated from (8) when s = 0 (that is, A == 2((), we may divide the remaining parame­
ter space into two regions of stable trivial solutions [2]. 

The solution of equations (2) indicates, besides the possibility of principal parame­
tric resonances, the presence of internal resonances. As previously mentioned, the 
combination of an internal resonance with a principal parametric resonance will give 
rise to simultaneous resonances. In this work, we will consider an internal resonance of 
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the type 3w! ~ w2 • Consequently, the two following cases of simultaneous resonances 

are possible: (1) A ~ 2w! and 3w! ~ w2 ; and (2) A ~ 2W2 and w2 ~ 3w!. 
For the sake of simplification, only the first case is presented here. In this case, it is 

supposed that the principal parametric resonance A ~ 2w! and the internal resonance 

3w! ~ w2 occur simultaneously. Then, performing numerous transformations and mani­
pulations of the asymptotic solution, Nguyen [8] finally arrived at a system of equations 
describing the stationary response of the discretized system as follows: 

(lOa) 

(lOb) 

(lOc) 

(lOd) 

where /fI = () - 2/f1! is the phase angle associated with the principal parametric resonan­

ce involving the first spatial mode, and /fI' = 3/f1! -/fI2 represents the phase angle 
corresponding to the specified internal resonance. The steady-state amplitudes, al and 
a2, and the phase angles, /fI and If!, can be obtained by solving expressions (10) by a 
numerical technique. 

It appears from (10) that there are two possibilities for a nontrivial solution: either al 

is different from zero and a2 is zero, or both are nonzero. The first possibility indicates 
that the specified internal resonance has no effect on the system response and only the 
principal parametric resonance involving the first mode may occur. For the latter 
possibility, as the first mode is the only one excited by the parametric excitation, the 
presence of the second mode in the response is possible only by the transfer of energy 
from the excited first mode to the second mode through an internal mechanism. 

3.2. FIRST-ORDER MULTIPLE SCALES APPROXIMATION 

The basic idea of the method of multiple time scales is to consider the expansion 
representing the response to be a function of multiple independent variables, or scales, 
instead of a single variable. Those multiple time scales are defined as 

T" = li" t for n = 0,1,2,' .. (l1) 

It follows that the derivatives with respect to t become expansions in terms of the partial 

derivatives with respect to T" according to 
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d dT0 8 d~8 
-=--+--+···=D +sD + ... 
dt dt aTo dt a~ 0 I 

(l2a) 

d 2 2 -=D +2sD D + ... dt 2 0 0 I 
(12b) 

Assume that the solution of equation (3) can be represented by an expansion having 
the form 

X(t; s) = Xo (To, I; ) + &XI (To, TI ) + ... (13) 

where To = t and I; = sf . Knowing that f) = Al , substituting (12) and (13) into (3) and 

equating the coefficients of SO and son both sides, one obtains 

D~xo+W2XO=O, (14) 

D~ XI + w 2 XI = -2DoDlxo - 2cDoxo -}X~ + 2f.iw 2 cosAl xO' (15) 

The solution of (14) is sought in the form 

(16) 

where A, which will be determined by eliminating the secular terms from Xl, is an un­

known complex function, and A is the complex conjugate of A. Substituting (16) into 
(15) and expressing cosAl in complex form, we obtain 

D~xl +W2XI =-[2iw(A'+cA)+3yA 2 AkW7 ;, _yA 3e3'W7;, 

+ f.iW 2 Ae i (AHU)7;, + f.iW 2 Ae i (A-<u)7;, + cc (17) 

where cc stands for the complex conjugate of the preceding terms and the prime denotes 

the derivative with respect to the slow time scale I; = sf . 

To express the nearness of A to 2w in (17), we let 

A = 2w+sp (18) 

where p is the detuning parameter. Then it follows that secular terms can be eliminated 
by writing A in the form 

A = tae'¥' (19) 

where a is the amplitude of vibration and If! the phase lag. Separating the result into its 
real and imaginary parts, one obtains 

where qJ = pI; - 21f!. 

a' = -ca + t f.i0Ja sin qJ, 

qJ' = p_]La2 + f.iW cos qJ 
4w 

(20a) 

(20b) 

Steady-state motions occur when a' = qJ' = 0 , and redefining the detuning parameter 

according to s = p/2w, we finally obtain 
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(21) 

This expression represents the stationary response associated with the principal parame­
tric resonance. For a steady-state solution to exist, a must be positive. The inner radical 
indicates that the excitation parameter must be greater than the damping coefficient to 
produce a sustained motion. The condition 

(22) 

is the cut-off value of the excitation parameter. As before, the "±" sign upon the inner 
radical indicates the possibility of two nontrivial solutions. 

Letting a = 0 in (21), one obtains 

S=+t~2_(.~/lTy]I/2 (23) 

corresponding to the base width of the principal parametric instability region in the (;t, 
s) parameter space. The (fl, s) plane is divided into three regions by the three curves 
defined by equations (22) and (23). As in the preceding method, it is noted that the 
boundaries of these regions are independent of y, the coefficient of the nonlinear term. 

As previously stated, two cases of simultaneous resonances are considered in this 

work. For simplicity, the second case of simultaneous resonances, i.e., A ~ 2W2 and 

w2 ~ 3wl , is presented here. Following the general scheme of constructing the method 
of multiple scales for equations (2), and introducing a detuning parameter for the princi­
pal parametric resonance according to 

A = 2W2 +cp 

and another one for the internal resonance according to 

3wI = w2 + ca, 

one can finally arrive at a system of equations describing the stationary motions: 

I . I Y21 3· - 0 -c2a2 +2:fl2w2a 2 s111 qJl -a-al SlllqJ2 - , 
W 2 

P _l.Y22 a2 _lY24 a2 + /I W COSm _l.fu a: cosm = 0 
2 I 4 2 r2 2 '1'1 4 '1'2' 

W 2 W 2 W 2 a2 

I YI2 2 • - 0 -clal +a-al a2 SlllqJ2 - , 
WI 

a+_1_[¥YII -Y22~12 +~YJ3 -~Y24~n+-l-[9Yl2ala2 -Y21 a:]COSqJ2 
4W2 8w2 a2 

+ t fl2 W 2 COSqJl = 0 

where qJl = pT., - 21j1 2 and qJ2 = aT., + 31j11 -1jI 2 . 

(24) 

(25) 

(26a) 

(26b) 

(26c) 

(26d) 
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From equations (26), it appears that there are two possibilities: either al is zero and 
a2 is nonzero, or neither is zero. The first possibility means that only the principal para­
metric resonance involving the second mode may exist; the second indicates the 
presence of two spatial forms in the system response resulting from a transfer of energy 
from the second excited mode to the first mode through internal resonance. 

4. Results and Discussion 

In order to get more insight into the differences between the two perturbation methods 
used in this work, numerical evaluation of the solutions was performed for a variety of 
cases, and the results presented in Figures 1 to 3 are typical of those obtained. In the 
figures, solid lines are associated with the first-order asymptotic approximation while 
phantom lines correspond to the method of multiple time scales. 

Figure 1 A. and B. 

\' I 
I I 
I i 
: : 

The principal region of incipient instability associated with the principal parametric 
resonance of any mode shape is shown in Figure lea), and the trivial solution in this 
instability zone is known to be unstable. As can be seen, if the excitation parameter is 
quite weak, there is no difference between the two perturbation methods. However, the 
difference is more pronounced when the excitation parameter J1 is large. As stated 
before, the remaining parameter space is divided into two regions of stable trivial 
solutions. The three regions of two different trivial solutions are illustrated in Figure 
1 (b). Region III obtained by the two methods is a clear indicator of the difference 
between them. The results show that Region III evaluated by the asymptotic approxima­
tion is a function of the detuning parameter, and hence is limited by this parameter. 
Meanwhile, the one obtained by the multiple scales method is independent of this para­
meter, and therefore can extend indefinitely. 
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Figure 2 A. and B. 

./ 

Stationary frequency-response curves associated with a principal parametric reson­
ance are plotted in Figure 2. When the steady-state amplitude a is a function of the 
detuning parameter s, it is known that a positive cubic nonlinearity bends the two 
response curves to the right for a hard spring effect. Moreover, a stability analysis [8] 
has shown that the upper branch is stable and experimentally observable while the lower 
branch is unstable and physically unrealizable. In this figure, as well as in Figure 1, the 
characteristics of the three regions and the phenomena associated with principal parame­
tric resonance were clearly explained in [2]. 

Figure 2(a) illustrates the nontrivial solutions at the onset of principal parametric 
resonance. When the response is near the resonance A, "" 2w, it can be seen that the 
differences between the two methods are not so important. As shown in Figure 2(b), 
however, it makes an important difference between the two methods far from the reson­
ance condition. Numerical calculations carried out on equation (6), analyzed by the 
asymptotic method, have resulted in the convergence of the stable and unstable solu­
tions. Meanwhile, the two stable and unstable branches analyzed by the method of 
multiple scales diverge to infinity. In practice, this cannot happen [2]. Hence, it can be 
said that the method of multiple time scales is valid only in the region of parametric 
instability, or when the response is close to a principal parametric resonance. 

For multiple resonances, for simplicity, results concerning simultaneous resonances 
will be presented in the form of the effect of an internal resonance on a principal para-

metric resonance. Therefore, the interactions between the internal resonance 3w\ "" w2 

and the principal parametric resonances A, "" 2w! and A, "" 2W2 on the frequency­
response curves are illustrated in Figure 3. In the figure, the bar over an amplitude 
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means that the amplitude is associated with simultaneous resonances, while the sub­
script i following the mth mode shape indicates that the amplitude is possible due to 
internal resonance. 

Figure 3 

As can be seen, the parametric response of the first mode occurs when IL ~ 2m} . At 
a certain frequency, however, a small part of energy from the first mode is transferred to 
the second mode, due to modal coupling between these two modes. Consequently, the 
amplitude of the first mode slightly decreases but remains larger than that for the second 
mode. The asymptotic solutions show that the energy transfer vanishes after a certain 
range; the amplitude of the second mode decays and the steady-state amplitude of the 
first mode regains its full strength. On the contrary, the multiple scales solutions will 
unrealistically go on forever. 

In contrast to the previous case, the response of the system at IL ~ 2m2 is particular­
ly interesting. It can be observed that when the excitation frequency reaches the point 
where the first mode can be excited through internal resonance, the amplitude of the 
second mode, which is directly excited by the parametric excitation, drops drastically 
and becomes less than the amplitude of the first mode which is due to internal resonan­
ce. This implies that there is a significant transfer of energy from the second mode to 
the first. As before, the asymptotic solutions indicate that when the transfer of energy 
stops, the amplitude of the first mode vanishes and the second mode continues to be 
excited by the parametric excitation. In contrast to the previous method, for the multiple 
scales approximation, the transfer of energy never stops and the amplitudes of the two 
modes again go on forever. 
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5. Concluding Remarks 

Two perturbation methods, the generalized asymptotic method and the method of multi­
ple time scales, are used to solve weakly nonlinear temporal equations of motion. Such 
equations of motion are governed by second-order differential equations with periodic 
coefficients, cubic nonlinearities, and linear viscous damping. 

For simple parametric resonance, the analyses predict the configuration of the prin­
cipal parametric instability region and the frequency-response characteristics of the 
system. For the principal region of parametric instability, the results indicate that there 
is no important difference between the two perturbation methods when the magnitude of 
the excitation parameter is small and moderate. For stationary frequency-response 
curves associated with principal parametric resonance, there is no significant difference 
between the two methods in the instability zone, or when the response is near the 
resonance. The further the response is from the resonance condition, the greater the 
difference between the two methods. The validity of the results analyzed by the asymp­
totic technique has been ascertained experimentally [2]. 

For simultaneous resonances, the results obtained by the method of multiple time 
scales are not reasonable because the amplitudes of vibration unrealistically continue 
forever. On the contrary, the validity of the results obtained by the asymptotic method 
has once more been ascertained experimentally [3, 9]. 
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NEW METHOD CALCULATING THE VIBRATION OF OFFSHORE 
STRUCTURE SUBJECTED TO WAVE ACTION 

1. Abstract 
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Usually, modal analysis is used for the vibration of simple offshore structures. For 
large structures the finite element method is applied to analyse dynamic deflections and 
stresses. Both methods are approximately; it is difficult to model the nonlinear 
component of the wave force due to the drag on each element and a common 
hydrodynamic damping is usually applied. 

In this paper the vibration of offshore structures subject to harmonic and random 
waves is considered by using the dynamic stiffness matrix method (DSM method); the 
element drag force is obtained by considering the relative motion between the structure 

and sea water in detail. 

2. The dynamic stiffness matrix of structure 

Assume the structure is divided into N elements or substructures, the complex 
amplitude of which may be determined. We denote the complex amplitude of element i 

by Il) (x ,OJ), where x is a coordinate of any point of element and OJ is its frequency of 

vibration. 
For element or substructure i we choose some points, through which thc clement or 

substructure is connected to other elements or substructures and denote the vector of 
complex amplitudes of generalized coordinates of the substructure at these connected 
points by 

-(I) "" "-( )
1 

q = q"q" .. ,q". 

The vector of complex amplitudes of generalized forces at the connected points is 
expressed by: 

_(Ii (A A A)F Q = QI ,Q2 , .. , Qu. 

where Q, is complex amplitude of the generalized force corresponding to ij, 
17S 
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The dynamic stiffness matrix (DSM) KU) of element or substructure i is defined by 
the equation 

(1) 

K(i) is square symmetric of order ni, the coefficients of which ku are functions of (f). 

The DSM of the complete structure is determined from the dynamic stiffness matrices 
of its elements or substructures as follows: 

N 

K= Ia; KU)a, = f R(') (2) 
1=1 

where K(i) = Dr j((i) D; is the DSM of element i in the global coordinate system, Di is 

the direction cosines matrix of element i; ai is the Boolean matrix determining the 

location of element i in complete structure, and j(U) = a; KU)a; . K is a square symmetric 

matrix of order n, the coefficients kij of which are functions of frequency (() ; N is the 
number of elements in the structure; n is number of the generalized coordinates of the 
structure. 

The inverse matrix of K is called the dynamic flexibility matrix (DFM) of the 
structure, or the matrix of the transfer functions of the structure H: 

H=KJ (3) 

In the following we consider the bar structure, the DSM of which may be calculated 
exactly. 

3. The dynamic stiffness matrix of the bar structure 
3.1 Governing equation 

The differential equation of damped longitudinal vibration of the prismatic bar in 
viscous elastic field has the following form: 

AE --+k-- -ku--cuu-m--=O (
02U 03U ) OU 02U 
ox2 ' ox20t a ot a ot 2 

(4) 

The differential equation of lateral vibration of the bar in a viscous elastic field, 
including shear deformation, rotatory inertia, and static axial force N." is as follows: 

[~ 1JL) ~ (" "dJZ ~)( -1isLl 2~ ~~ 
E-\.ox4 +/v ox40t +N oi + Ca +/0, Ox +mOt2 1- k'ACrmr 0/Ot 2 -/0, Otox2 -

02V EJ 0 2 
(" ,.Ov 02V] mr2 0 2 (" l' OV 02V] 

c~v------- c v+k -+m-- +---- c v+k -+m-- + 
a ox 2 k' AG ox 2 a a ot ot 2 k' AG ot 2 a a ot ot 2 

k: 0 ( v v m 02V) c: (v v OV 02V) --- c v+k -+m-- +-- c v+k -+m-- =0 
k' AG ot a a ot ot2 k' AG a a ot ot2 (5) 

In equations (4) and (5) u(x. t), v (x,t) are the longitudinal and lateral displacements of 
J 

the bar, A and J are the area and the moment of inertia of the bar cross section, r2 = A 

is the radius of gyration of the bar cross section, m is the mass per unit length of the bar, 

k;,e; ,k; ,< and k:, c: are the elastic constants and damping constants of the field 

around the bar for longitudinal, lateral displacements, and rotation of the bar section 
respectively, coefficient k' relates to the non uniform distribution of shear force in the 
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bar cross section (it is useful to recall that k' = ~ for a rectangular section), £ and G are 
6 

the modulus of elasticity and shear modulus of the bar material, k; is viscous damping 

coefficient. 

If the bar harmonic vibrates with angular frequency n, then the displacements u(x, t) 

and vex, t) may be taken in the following form: 
u(x, t) = u (x)ein, 

vex, t) = v (x)ein, (6) 

wherej =H 
In general u (x) and v (x) are the complex functions of frequency n. They are called 

the complex amplitudes and can be expressed as follows: 
it (x) = I it (x)1 el',(x) 

V (x) = I v (x)1 el',(x) (7) 

in which I it (x)l, I v (x)1 and Ipu(x) , qJy(x) are the amplitudes and the phase angles of the 
displacements u(x, t) and vex, t) at the section x respectively. 

Substituting expressions (6) into equations (4) and (5) we obtain the following 
equations for it (x) and v (x): 

d'ii(x) (AI)' ---+ -- ii(x)=O 
dx' [ 

(8) 

d 4v _(~)4(I_a a )v+(~~)4(a +a )[' ~'v +A4(~)4a a v+~~'v =0 (9) 
dx 4 [ " { ,,' dx' h { ,,' {' dx' 

whe" > ,= [mE~' (1- j ~~ - m'~, l]' 1>,= [mt~' [I j ;~ - m'~, l]: 1 (10) 

E = £[1 + jk;n] is the complex modulus of elasticity, 

( I - j~: 1 _ c: 1 J 2 

mr2 n mr2 0 2 r2 EJ 2(1 ) 2 N,) 
~__ +f.1 ~; a l --- (11) 

au = (1-/: 1 ~ ~ IJ f' a, = f2 k' AG = k' {2 EJ 

mOm 0 2 

We have assumed E=2(1+,Ll)G, where,Ll denotes Poisson's ratio. 

By neglecting k; , c;, k: ' c:, k; we find that expression (11) becomes: 

r' 2(1 + f.1) . N,,!' aD = 1" a, = --k,-a,, ' a, = EJ 

3.2 Dynamic stiffness matrix (DSM) of the bar: 
3.2.1 DSM for longitudinal vibration: 

The solution of equation (8) is 

u(x) = BI sin1 x+~ cos1 x 
I I 

The expression for complex amplitude of N (x) is 

IV = AE du 
dx 

(12) 

(13) 

(14) 



www.manaraa.com

178 

Denoting U I = U Ix = 0; U 2 = U Ix = I; N I = N Ix = 0; N 2 = Nix = 1 for the displacements 
and the forces at the end nodes of the bar, from equation (13) and (14) we obtain the 

following matrix equation for ui and Ni : 
(15) 

where 

(16) 

k' - k' - AE ~ . k' - k' __ AE ~ 
II - 22 - I t l' 12 - 21 - I . 1 anAl smA, 

The matrix KI is symmetric and is called the DSM of the bar, its coefficients k~ (i, j =1,2 .. ) 

are functions of frequency Q. 

Having the nodal displacements U J, U 2 we determine the displacement of any cross 
section x from the equation: 

'() U2 - cos AA . AI ' A, 
U x = sm-x + ul cos-x. (17) 

sinAI I I 
3.2.2 DSMfor lateral vibration: 

The solution of equation (9) is as follows: 

vex) = AI Sin( Ah ~ T) + A2 cos( Ah ~ T) + AJ Sinh( Ah [ti; T) + A4 COSh( Ah [ti; T) (18) 

where 

( ao -a2)2 4 (ao +a2) a l
2 ao +a2 2 a l 

q2 = l-al a2 + --2- A;; + --2- a l + 4~ ---2-~ - 2~ 

The equations for the complex amplitudes of rotation, shear force and bending moment 
of the bar are: 

(20) 

. (a,,+a2)A:+a l 
PI = -1---1---'4---' P2 = , 4 

- a"a2/1"b- a l a2 1- a"a2/1"b- a l a2 
(21) where 

Denoting the complex amplitude of nodal displacements, nodal rotations, nodal forces 
and nodal moments of the bar by: 

V I = v Ix = 0; ;p 1 = - ;p Ix = 0; V 2 = v Ix = I ; ;p 2 = - ;p Ix = I 

QI= Qlx=O; MI= MIx=o; M2= - Mlx=l; Q2=- QIX=1 
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from equations (18), (20) we obtain the following matrix equation for v i, cP i, Q i, 
kfi(i=I,2) 

where 
V = (V],;P], vz, ;PZ)T 

Q = (Q], ih Q2, MZ)T 

r - fJI - r - fJ I 
EJ -fJI al 2 fJl 

Kb = Y _ r fJ I r 
al 2 

(22) 
fJI 

-fJI al 2 fJI a 12 

A~ r = d (H]hz + Hzh])(h]S]Cz + hzSzC]) 

A~ fJ = d [(H]h] + Hzh2)SISz + (Hzh] - H]h2)(1 - C]C2)] 

a = A; (hi-fi: + h2 ji; )(hzS]Cz - h]C]Sz) (23) 

_ A~ - A~ r = d (H]hz + Hzh])( hiS] + hzSz ) ; fJ = d (h]Hz + hzH])( Cz - C]) 

- Ab c- ~ 
a =d(h]...;q] +hz...;qz )(h]SZ -hZS]); 

d = 2h]hz(1 - C]Cz) + (hi - h]z )S]SZ 

H, = (M,- :2J~ Hz = (PZqZ + ;~)~ (24) 

h, =[(l+a2p2)-a2p,A~q,].jq, ; hz =[(1+a2pJ+aZp]A~q2~ 
S] = sin(A bfci:) ; S2 = sinh (A b~); C] = cos(A b-fi:) ; Cz = cosh(A b~) 

Having VI ,!p]' vZ ' IPz we determine the displacements of any section x from equation 

(18), in which Ai(i = 1..4) will be obtained from 
lJS2C, +h,S,~ 1(h,S,S2 +~c,~ -~) ~2~ +S,h, 

h, A hh,~ h, 
h, +~S,S2 -h,c,~ 1(h,C,S2 -~S,~) 

h, A hh,~ 
C,-~ 

~ d' ~C,S2 +h,S,~ 1(h,C,~ -~~S2 -h,) 

~ Ahh,~ 

where 

~ -~C,~ -h,S,S2 1(~S,~ -h,S2C,) 

~ Ahh,~ 

, I 2 2 
d = 2(1 - C]Cz) + ~ (hz - hi )S]Sz 

h]hZ 

Ahh, 
li¥~~h,S2) 

Ahh,~ 
1(C, -<;2 

Jy,~ 
1(h,S2 -~S,) 

A hh,~ 

For the case qz < 0 or A > A = JI - a a 4 I 
h" , , a,a,(l-a,a 2 ) 

v, 

~ (25) 

(26) 
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the equations (23), (24), (25) can be used after replacing sinh(Ab.JCj;) by jsin(Ab ~)and 

;q; by j J - q 2 . 

Expanding the coefficients of DSM as in power series and neglecting the higher powers of 
Q we obtain the stiffness, mass and damping matrix of the finite element method [2]. 

4. Vibration equation of structure 
Denoting the generalized coordinates and the corresponding generalized forces of the 

structure by ql and Q (i = 1,2,3, ... , n) respectively, we express the boundary conditions as 

follows 

iii = 0 (i = rio r2, .. , rng) 

Q) = Q)(w) (j = SJ, S2, .. , Snf) 

with the condition i ,r j ; ng + nf = n 

(27) 

(28) 

The equation (27) expresses the geometrical constraints, and equation (28) expresses the 
force conditions on the structure. 

The equation of motion of the constrained structure may be written in the form 

Q' = K'q' (29) 

(30) 

K' is the matrix of order nf obtained by deleting the rows and columns rl, r2, .. , rng of matrix K 
and called the DSM of the constrained structure. 

From equation (29) we have: 

q' = (K*rIQ' (31) 

The matrix 
(32) 

is called the dynamic flexibility (DFM) of the constrained structure. 
The complex amplitudes of the reaction forces of constrained are obtained by substituting 

the solution q' and qi = 0 (i = rio r2, .. , rng ) into the equation 

Q =Kq (33) 

For a random external force with spectral density S Q'Q' (w) , the spectral density of q' is 

determined from following equation: 
-. * T 

Sq'q'(W)= H SQ'Q,(w)(H) (34) 

where H' is the complex conjugate matrix of H'. 

The natural frequencies of the complete structure are determined from the equation [2]: 

Det IK'(w)1 = 0 or Det IH'(w)1 ~ 00 (35) 

The natural frequencies of each element of structure are determined from equation: 
Det IH'(w)1 = 0 or Det IK'(w)1 ~ 00 (36) 

5. Vibration of the bar structure by wave action 
Consider a bar structure, the elements of which are bars with constant cross section. 
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Denote the local coordinates of a bar element by x, y, z; x is the bar axis, y, z are the 

principal inertia axes of the bar cross section. For a regular wave with frequency OJ the 
complex amplitudes of the wave loading acting on a element of the structure are 

, , 

qy(m,X) = CMypAuoy(x) + Chy(X)u"y 

qz(m, X) = C MzpA itoz(x) + C hZ(.nU-Oz 

(37) 

where p is the mass density of the sea water, A is the cross section area of element, 

Uay, uoi , uoy ' ufYL are the complex amplitude of the velocity and acceleration of the water 

particle in the y,z directions respectively, CMy,CMi are inertia coefficient of the section in 

the y and z directions respectively. 

In equation (37) the drag term is linearized and the coefficients Chy ' Chz are determined 

from the following equations: 

C hy (x) = 3: pC DyD yOJ Ii-,y I 
(38) 

4 I ~ I Ch,(X) = ?;;;pCD,D,w u" 

are the complex amplitudes of velocity of the bar relative to the water, 

C Dj>' C Dz are the drag coefficients of the bar section in the y and z direction respecti vely. 

The external damping coefficients of an element in the y and z direction are determined 

from the equations: , 
f Chi ('Xllgv (.XlI' dx 

k"y = -"----;-, ---, ---

flg,(X)1 dx (39) 

, 
f Ch,(x)lg, (.XlI' dx 

k", = "-"-,~-----

flg,(x)I'dx 

where g y' gz are the vibration forms of the bar in direction y and Z, which may be exactly 

determined by equations (18) and (25). 
For a random wave the transfer functions of the loading acting on each bar element are 

H q , (w,x) = CMypAH,,,, (w,x) + Chy(x)Hu , (w,x) 
(40) 

H q , (w,x) = C M,pA H,,, (m,x) + C h, (X)H"_ (m,x) 

where HU",(Z)' HU",U) are the transfer functions of the velocity and acceleration in direction 

.Y( or z) with the wave height considered as the input. 

In equation (40) the coefficients Chy ' Chi are determined from: 

Chy(X)= f2pCvyDyCL ~-;. lin 

(41) 

where a ~ ,a ~ are the standard deviation of the relative velocity of the bar element to the 
Ury U rz 

water, they are determined from 



www.manaraa.com

182 

OJ 

2fS~~dm 
U,.yU,.v 

(42) 
OJ 

2 f S Ii"Ii" d m 
o 

In equation (42) Suu, S", are the spectral density of relative velocity of the bar 
ry IJ! UnUrz 

element to the water in directions y and z ; they are determined from equations 

S""",., (x, m) = IR ~'Y (x, m )1
2 
S;; (m) 

s""~,, (x,m) = IR"'i (x,m)1
2 
S;;(m) 

(43) 

where H ~ ,H ~ are the transfer function of the relative velocity of the bar element to the 
/I,.v lI,.v 

water with the wave height considered as the input, they are determined from 
H = H - jOJH_ 

i'rv rlop /l y 
(44) 

H = H - jOJH 
lin ITot lit 

j[ and H in Eq(44) are the transfer functions of the displacement of bar element with the 
It y U 

wave height considered as input, they may be determined from the transfer function of the 
structure [see Eq.(32)] as follows: 

H = (K'rl.HF (45) 

where K' is the DSM of structure and HF is the transfer function of the wave loading with 
wave height considered as the input. 

Having the loading, we may determine the vibration of the structure, the internal force and 
the stress in any point of the structure from equations (31), (34), (33), (14), (20). 

Since the drag force depends on the vibration of structure, we must use the calculation 
interactively. 

6. Example 
Consider the structure shown in Fig 1 a with following input data[4]: 

Columns: DI = 9144mm, tl = 88,9mm. 

Braces: D2 = 914mm, t2 = 38,lmm. 

The lowest horizontal brace D3 = 7316mm, t3 = 51mm. 

The height of the first floor = 36,57m 

The height of the other floors = 30,48m 

The width of structure b = 67,056m 

The water depth d = l67,64m 

The concentrated mass on platform 42000t 
Modulus of elasticity E = 2, 1.l0KkN/m2. 

Damping coefficient ki = 0,02 (E = E(l + 0.02})) 
The structure is modelled by the plane frame as shown in Fig lb. 
The first frequencies of the structure are given in following table: 
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Table 1 The natural frequencies of the structure is Fig 1. 

W(S·I) Elementary By including effect By including effect of axial force, 

case of axial force shear deformation, and rotatory inertia 

WI 1,34506 1,34390 1,34044 

1»2 5,00853 5,00569 4,93900 

Olj 7,52246 - -

W4 8,85267 8,85311 8,87701 

Ws 9,17911 - -

CD [) 

13 
,. 

Q) " " <D 0 
11 " 

CD 
19 '0 

" 
CD " 

" 
@ J7 

" 
@ 

31 

" 
@ @ 

Figure la Figure Ib 
By assuming that the relationship between the height and period of wave is expressed in 

the form: 

where A = 6,91.10-4, B = 4,095, we find the computated results of the dynamic displacement 
and stress of structure are given as in table 2. 

Table 3 shows the random vibration of the structure by using the wave spectral density 
function of Pierson Moskowitzl4]: 

S .(OJ) = .!.~exp(-~) 
q~ 2 OJ5 OJ4 

A = 411"3 h,2 B = 1611"4 3 
r4 ' r 

() 0 

where 

In the table 3 U (2) ,U .(2) ,u(2) are the standard deviations of the displacement, velocity 
v..- v..- v,-

and acceleration of the node 2 in horizontal direction respectively, U am", is the standard 

deviation of the maximum stress in the structure. 
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Table 2 Harmonic vibration of structure in Fig 1 by a regular wave 

Wave Wave Wave Maximum Maximum Maximum 
Wave height frequency period length hydrodynamic amplitude of ainplitude The location 

h,(m) ro(s") T(s) (m) damping displacement ofstress of maximum 
coefficient (m) (kN/m2) stress 

k.m,,(kNslm') 

0,2 1,574 4,00 24,9 0,055 0,006 2900 node 1 
element 21 

0,387 1,340 4,69 34,3 1,5 0,5113 234690 node 1 
(resonance) element 22 

0,664 1,174 5,35 44,7 0,187 0,0006 2597 node 2 
element 15 

1,5 0,962 6,53 66,5 0,507 0,0616 29261 node 1 
element 22 

2,5 0,85 7,40 85,4 0,726 0,0631 30307 node 1 
element 22 

4,5 0,736 8,54 113,8 1,33 0,0331 17688 node 2 
element 16 

6,3 0,678 9,27 113,8 2,00 0,0036 22158 node 1 
element 15 

9,5 0,613 10,25 164 3,1 0,0588 33426 node 1 
element 15 

13,5 0,563 11,16 194,6 5,01 0,1278 65769 node 2 
element 30 

16,65 0,536 11,73 214,6 6,4 0,178 94160 node 2 
element 30 

T bl 3 R d 'b f , F' 1 a e an om VI ratIOn 0 structure m Ig 

Spectral density function of Pierson Moskowitz 

hs = 10m; hs = 0,5m; hs = 1m; hs= 1m; hs = 1,5m; h, = 1m; 
T = 9(s) T = 5,3(s) T=5(s) T = 5,5(s) T = 5,5(s) T = 7(5) 

a(2) (m) 0,6091 0,1035 0,2161 0,1881 0,2722 0,1254 
v, 

a(2)(m/ s) 0,8129 0,1388 0,2899 0,2521 0,3648 0,1679 
VI 

(}v~Z)(m/ i) 1,0908 0,1864 0,3894 0,3385 0,4900 0,2253 

() ~""' ( k1sz ) 
279873 47527 99193 86326 12492 57547 

karrmx(IuVYmz) 4,69 0,61 1,31 1,69 1,695 0,77 

Period of 4,68 4,67 4,68 4,68 4,68 4,68 

peak (s) 

Spectral 0,1039 0,053 0,051 0,061 0,067 0,066 

width 
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ON THE TRANSVERSE VIBRATIONS OF BEAM-BRIDGES UNDER THE 
ACTION OF SOME MOVING BODIES 

NGUYEN V AN KHANG, HOANG HA, VU VAN KHIEM 
and DO XUAN THO 
Hanoi University o/Technology 

1. Introduction 

Transverse vibration of continuous beam under the action of a moving body has been 
mentioned in works such as [1,2,3,4]. Currently transverse vibrations of the beam on 
many intermediate elastic supports are attracting increased attention in cable-stayed 
bridges. In this work, we use the method of substructures to derive transverse vibration 
equations of continuous beam with intermediate elastic supports under the action of 
moving bodies. An algorithm is built to solve the vibration equations. From this 
algorithm, a computer program is created using Turbo Pascal language. 

2. Derivation of vibration equations using method of substructures 

k I 

lli 
1------------L-----------7)I ~ 

) 

Wl----------------------------------------------------~ 

Figure 1. Vibration model of beam- bridge with intermediate elastic supports 

Consider a continuous Euler-Bernoulli beam with J intermediate elastic supports and 
length I (figure I). Suppose that its mass oflength unit is J.l (J.l=pA), and bending rigidity 
EI is constant across of its length where p is mass density, A- cross sectional area, E­
elastic modulus, 1- centroidal moment of inertia. Cj and Ij G=I, ... ,J) respectively represent 

187 
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the rigidity and the coordinates of intennediate elastic support j. The i-body (i=I, ... ,N) 
consists of mass mj attached to the spring system with rigidity kj and damper dj directly 
proportional to the velocity. The i-body moves with the velocity Vj and is subjected to 
the action of force Gjsin(Ojt+yj) caused by the unequilibrated mass which rotates with 
angled speed OJ. Here Gj is the amplitude of force. 

x 

2a. 2b. 
Figure 2. Substructures 

Using the method of substructures to derive vibration equations of the beam and the 
bodies, we divide the system into N+ I substructures: beam and N bodies (figure 2). 
The position of the i-body can be detennined by 

llj = Vj (t-'tj), t ~ 'tj (1) 

where 'tj denotes the instant time when the i-body starts moving along the beam with the 
constant velocity Vj. 
Additionally it is supposed that during the motion, the i-body is not separated from the 
beam and its velocity Vj satisfies the condition of non impact as follows 

llj> llj (i<j) 

Substructure 2b is considered as a simple beam subject to following forces: 
- Pressure Pt(x,z,t) of bodies on beam 

N 

Pt(x,z,t) = l: Lj(t)[mjg + Gjsirnpj - mj Zj ] 8(x-TJj) 
i=l 

with <pj = Ojt + Yj 
- Reactions of elastic supports 

J 

Pg(x,z,t) = -.2: Cjw(lj,t) 8(x-Ij) 
J=1 

(2) 

(3) 

Here we apply the Dirac-function 8(x-a) and the logic-function Llt), which are defmed 
by the following relations 
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with 

when 

when 

'tj :s;t:S;Tj +'tj 

t < 't j and t > 't j 

o(x-a) = lim o&(x-a) 
£--+0 

when 

when 

189 

(4) 

(5) 

(6) 

Vibrational differential equations for substructures can be obtained by applying the 
basic principles of dynamics. The equation describing transverse vibration of beam 
including internal friction is 

(7) 

p(x,z,t) = Pg(x,z,t) + Pt(x,z,t) 

in which a. and p are damping constants. 
The equation describing the vibration of i-body has the following form: 

Li(t)(mi Zj + di Zj + kiZD = Li(t)(mig + Gisin<pi + di \tv 11i + ki W 11i ) (8) 

(i = I, ... N) 

in which W 11i = wet, 11i) ; 
8w(t, 11) 

\tv11; = at 

The equations of motion (7) and (8) are a mixture of ordinary and partial differential 
equations. Four boundary conditions, two at x=O, two at x=I, and initial conditions must 
be specified for the solution of the equations. 
The boundary conditions have the following forms: 

x= 0: (9) 

x = I: (10) 
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The initial and transformation conditions have expressions of the form 

(ij=I, ... ,N) 

(11) 

(12) 

When we consider the non-linearity of intermediate elastic supports, we find the reaction 
of the elastic supports has the following form 

J 

pix,z,t) = - L [ct)w(lj,t) + cP)w3(lj,t)] o(x-Ij) 
J=1 

Thus, the equation describing non-linear transverse vibrations of beam is 

with 

N 

p(x,z,t) = I Lj(t)[mjg + Gjsin<pj - mj Zj] O(X-TJj) 
i=1 

J 

-L [ct)w(lj,t) + cP)w3(lj,t)] o(x-Ij) 
J=1 

3. Transformation into ordinary differential equations 

(13) 

(14) 

(15) 

Assume the solution of(7) and (8) with the boundary conditions (9) and (10) to be of the 
form 

n rnx 
w(x,t) = I qr(t)sin -1-

r=1 
(16) 

in which qr(t) (r=l, ... ,n) are generalized coordinates to be determined. Substituting 
solution (16) into equations (7) and (8), we find 
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n s EI a 7t 4 4 2 N . S7tll j . r7tll j . q =- L (or[-(-) S +P]+ - LLJt)(djsm-sm-)) qr 
s r= 1 ~ 1 III i= 1 1 1 

+2 ILJt)(djSinS7tllj) Zj- ± {o~[EI (2:f s4 + 
III i=l 1 r=l ~ I 

2 N r7tv· r7tll' r7tll' S7tll' + _ " L· (t)(d· __ I cos--' + k· sin--' )sin--') q 
III i~l' '1 I ' 1 I r 

2 n J s7t1 k r7t1 k 2 N . S7tll j 
- - L ( L ck sin--sin--) qr + - L L j (t)(k j sm--) '4 

III r=l k=l I 1 III i=l I 
(s=I, ... ,n) (17) 

and 

.. ~ (d j . r7tllj ). dj . 
Li(t) Zj = Li(t){ L.. -sm-- qr - - Zj 

r=l mj 1 mj 

~ k j . r7tllj d·r7tv· r7tl'\' k· G· + L.. (-sm-- + _1 __ 1 cos--I ) qr- -' Zi + g + -' sinepi }; (18) 
r=l mj 1 Imi I mj mj 

(i=I, ... ,N) 

in which o = s {I 
r 0 

r=s 

r:;t:s 

The differential equations (17) and (18) can be written in the following matrix form 

q = B(t) q + C(t)q + f(t) (19) 

in which B(t), C(t) are square matrices of (n+N) degree, q, f are column vectors with 
(n+N) elements. Where 

The elements of the vector f, matrices Band C have the forms 

fn+i = Li(t)[g + ~ simpi]; (i = 1, ... ,N) 
m· , 

EI 2 N S7t11 • r7t11 • 

b - s:s[ a (7t)4 4 AJ "L (t)d . '11, 'II sr-- u r - - s + ..... - - L.. j jsm--sm--; 
Il I III i=l I 1 
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2 b .=-',n+1 III 
L ()d . S7tlli 'b - di . f7tlli , _ i d i i t i sm-- , n+i,r - Li(t) -sm--, bn+i,n+j - - 8 j Li(t) - ; 

I mi I mi 
(s,r = I, ... ,n; ij = I, ... ,N) 

EI 7t 4 4 2 J . S7tlk . f7tlk 
Csr =- 8~-;(T) S - III k~Icksm-l-sm-I--

2 N f7tv· f7tll' f7tll' S7tll' - '" L·(t)(d· __ I cos--I +k· sin--I )sin--I . 
III i~I 1 1 I I 1 I I' 

2 L () k . S7tlli ( )[ ki . f7tlli dif7tV i f7tlli Cs,n+i = -I i t i sm-I - ; Cn+i,r = Li t -sm-I - + -I - cos-I -]; Il mi mi 
. k· 

Cn+i,n+j = - 8 j Li( t) _I ; 

mi 
(s,r = I, ... ,n; ij = I, ... ,N) 

4. The transverse vibration of Dakrong cable-stayed-bridge in Quangtri province 

w 
(mm) 

7777 7777 7777 7777 7777 

22.5 128.9 22.5 

173.9 

Figure 3. The calculated model of Dakrong cable-stayed-bridge in Quangtri province 

The calculated model of Dakrong cable-stayed-bridge in Quangtri province in Vietnam 
influenced by the action of moving bodies is shown in figure 3. The comparison of 
calculated results with the experimental results is represented in figures 4 and 5. In 
figure 4 the curve of the transverse deflection of the cross section x = 0.071 is 
demonstrated when there are 3 bodies with masses ml = m2 = m3 = 13030 kg, velocities 
VI = 20 km/h, V2 = 15 km/h and V3 = 12 km/h. The dotted curve is the experimental 



www.manaraa.com

193 

result, the full curve is the calculated result. Figure 5 shows the graph of the transverse 
deflection of the cross section in the middle of the beam when there is one body with 
mass m = 13030 kg and velocity v = 25 kmIh. The dotted curve is experimental, the full 
curve is the calculated result. Figure 6 shows the curve the transverse deflection of the 
cross section in the middle of beam with one moving body. The maximum transverse 
deflection of the beam corresponding to different values of the velocity of moving 
bodies on the bridge is demonstrated in figure 7. 

ao 
a2 
a4 
a6 
as 
1.0 
w 

(mm) 

1 2 J 4 5 6 7 s 9 10 11 . - ~""".' • '7 ' ....,......" -.-. 
-~ 

~./ .,p' ~ 

~ r t(s) ., ~ ... ,- -, 
.-, '\! ~ 

(8) 
~ 

a Calculation b ____________ Test 

Figure 4. The transverse deflection of the cross section x = 0.071, for three moving bodies 
with masses ml = m2 = m3 = 13030 kg, velocities VI = 20 kmlh, V2 = 15 kmlh, V3 = 12 kmlh. 

ao 
a2 
a4 
a6 
as 
1.0 
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(0101 !J 

2 4 6 
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a - CalcuJaJion 

s m n U M M U 
~ -'''': 

'" I/,/ /{sJ 
, .. \ \ /" . , .\ -(Jl" 

/ \~ /1 
(if \\ ./~ 

\ .. n' '(jJ) 
VJ,.: 

b ------- Test 

Figure 5. The transverse deflection of the cross section in the middle of beam, for 
one moving body with mass m = 13030 kg and velocity v = 25 kmlh 
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Figure 6. The transverse deflection of the cross section in the middle of the beam, for 
one moving body with mass m = 13030 kg and velocity v = 105 kmlh 
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Figure 7. The dependence of the maximum transverse deflection on the velocity of moving bodies 
in three cross sections, for two bodies with masses ml = m2 = 13030 kg 

and velocities VI = V2 = V 

5. Conclusion 

A system of vibration differential equations of a continuous beam with elastic 
intermediate supports under the action of moving bodies has been constructed by 
applying the substructure method. An algorithm and a computer program (VIBEAM) 
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for the calculation of vibrations of beams have been created. The VIBEAM program can 
be used for calculations in the design of bridges that will bear moving bodies. 
This paper was completed with the financial support of the Vietnam Basic Research 
Program in Natural Science. 
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PILE SOIL SYSTEM IDENTIFICATION BY A 

MODAL TESTING APPROACH 

NGUYEN TIEN KHIEM, DAO NHU MAl, 

NGUYEN VIET KHOA, LE V AN ANH 

Depaftment of Technical Diagnosis, 
Institute of Mechanics 
264 Doi Can Str., Hanoi, Vietnam 

1. Introduction 

In current construction methods the common practice is to use pile foundations, 

especially in areas of soft soil conditions. Once a pile has been driven into the ground, the 

task of checking its bearing capacity and integrity is required. For a long time the static 

test has been the only way to evaluate the pile foundation capacity. However, its use is 

restricted by the cost of implementation and the small amount of information resulting 

from the test. It is often necessary to know more specific parameters of the pile and the 

properties of soil, for use in further analysis of the overall structure to be constructed. In 

addition, the pile might be damaged during its installation and any information about the 

pile integrity could be very useful for evaluating its capacity. These requirements can be 

provided only by using a non-destructive technique which measures the vibration 

response of the structure to obtain its modal parameters; this is called the modal testing. 

This paper is devoted to the problem of parameter identification of the pile soil system by 

the modal testing method. 

The pile is usually treated as a bar; its free axial vibrations described by an one­

dimensional wave equation have been studied comprehensively in the literature. R. D. 

Adams et al. were among the first authors to study the nature of a damaged bar. In [1] 

they suggested modelling a damage located at a position in the bar by an axial spring, and 

investigated the damage detection problem based on receptance analysis. Further studies 

in this topic were carried out by Y. Narkis in [2]. The local flexibility model of damage is 

an useful method for solving the problem of damage detection, however it does not 

cover the case of the distributed damage. The aim of our study is to introduce damage 
197 
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length into the damage detection problem for a pile-soil system. The soil is modelled by a 

spring and dashpot. Our specific contribution is to distinguish between the stiffness of the 

soil surrounding the pile at the lower pile edge, and the general soil stiffuess. 

In section 2, a vibration model of the pile-soil system will be established. In the 

following sections two problems are considered: a system parameter identification 

problem when the pile has no defect (section 3); a pile damage detection problem when 

soil parameters are assumed to be given (section 4). Procedures for solving these two 

problems will be illustrated by numerical examples. 

2. Vibration Model of System 

2.1 DAMAGED PILE MODEL 

x 
t x='t· ..................................... .. 

x=~·1 
l\=~l 

x=o 
p p 

E,F,p 

Suppose that a bar of the total length L, cross 

sectional area F, density p and Young's 

modulus' E has a defect in the interval (XI, X2). 

The length of the defect Llx = X 2 - X I is 

assumed to be small enough so that the defect 

bar specimen described by the parameters Ex, 
Fx, px can be considered as an axial spring of 

stiffness K. Let UI, U2 be the axial 

displacements of the bar at the sections X" X2 

respectively, then 
Figure 1. Model of a damaged bar 

P = Fxcr = ExFx u2 - ul = K(u2 - uJ 
Llx 

where P the tension force along the axial, cr - the normal stress at the section Xo. 

From this relationship the stiffness K can be found as 

K = ExFx . 
Llx' 

Introduce a dimensionless stiffness k by 

K ExFx 1 Y k-----·---- EF - EF Llx - Llx . 
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There are some specific cases: 

a) Undamaged pile: Ex=E, Fx=F, L1x~0 => k---fCXJ 

b) Change in cross section area: Ex=E, L1x:;;t 0 => 

c) Change in elasticity modulus: Fx=F, L1x:;;t 0 => 

Fx 
Y F = F = kL1x 

Ex 
Y E = - = kL1x 

E 

199 

(1) 

(2) 

If Ex / E ~ 00, then k = 00 and one gets an absolutely rigid specimen of length 

L1x "* 0; on the other hand, when Ex / E ~ 0, k = 0 we have a gap of length L1x 

(in the sense of stiffness). 

d) Cracked pile: ExFx~ 0, L1x ~ 0, but 

lim ExFx = k => k = ~ 
"x-->o L1x c EF 

(3) 

as considered in [1] by Adams R. D. et al. For instant, according to [3], the coefficient kc 

can be found by the formulas 

~ = EF = 2nby2 (O. 7442 - O. 8463y + 1. 376y2 - O. 7540y3 + O. 5476y4 ) ( 4) 
kc k 

where y = 2d ; d - crack depth, b - beam high. This formula is obtained in conjunction 
b 

with the stress intensity factor as equivalent spring constant for axial tension. 

2.2 VIBRATION MODEL OF PILE-SOIL SYSTEM 

Consider the pile soil system modelled in Fig. 

2. Impedance characteristics of the soil surrounding 

the pile are elastic coefficient Kx , viscous damping 

coefficient ex. For the soil at the edge of the pile 

only the elastic coefficient Ko is considered. Free 

vibration of the system is given by the equation 

... x 

x=L -J} - Jjf:-

X=x2 ............ . 

a2u au a2u 
pF - + C - + K u - EF - = 0 at 2 x at x ax 2 (5) x=o .~Jf .. 

Boundary conditions at x = 0, x = L and at sections 

X=Xl, X=X2 have forms Figure 2 
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(EF ~~ + Ku 11 = Kulx2; (EF ~~ - Ku 12 = -KUl xl · (7) 

Introducing the notations 

2 E a =-
p 

h = Cx . k _ Kx . 
2pF' x - EF' 

and assuming the well known form of free vibration 

u(x, t) = <I>(x) . exp{(- h + iro)t 

we find that equation (5) becomes 

<I>"(x) + A?<I>(X) = 0; 

and conditions (6), (7) reduce to 

<I>'(L) = 0 <1>'(0) - ko<l>(O) = 0 

<I>'(x I) + k[<I>(x I) - <I>(x 2)] = 0 

<I> '(x 2) - k[ <I>(x 2) - <I>(x I)] = 0 

where 

The appropriate solution of equation (9a) is 

K 
k=-

EF 
(8) 

(~a) 

(9b) 

(9c) 

O:S; x :s; XI where LI = A COS Ax + ko sin AX 

x 2 :s;x:s;L L2=COSA(X-L) 

functions Ll, L2 obviously satisfy two first conditions in (9b). C1 and C2 are arbitrary 

constants that will be determined from the two last conditions in (9b). Thus, substituting 

the expression of <I> into (9b) leads to a system of linear equations for CI and C2 . The 

condition for existence of non-trivial solutions with respect to Cl, C2 is 

or 
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(10) 

This is the frequency ( characteristic) equation of the system. We distinguish 

particular cases 

a) Undamaged pile Xl =X2; k=oo: 

b) Pile with a rigid specimen oflength M '* 0; k=oo: 

Atan(A(L -M»)==ko 

Equation (lIb) differs from (lla) by the pile length reduced from L to L'=L-M 

c) The case investigated by Adams R. D. et al. [1]: M-+O, ko = 0: 

d) If ko-+ 00, equation (10) takes the form 

3. Pile-Soil System Parameter Identification 

(11a) 

(lIb) 

(llc) 

(lId) 

In this section, we consider the problem of determining the system parameters: the pile 

length (L) and the soil properties such as Cx, Kx, Ko, when there are measured natural 

frequencies co ~" ", co ~ and structural damping ratios h;,. ", h~ . This problem includes 

the undamaged pile-soil system (11 a) and the case of pile with a rigid specimen (11 b). 

Thus, the basic equations for solving the problem are 

j=1,,,.,M (12) 

It is evident that Cx may be calculated approximately by 
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Three unknowns L, kx, ko must be determined, therefore three modes should be 

measured. We simplifY by using the following change in notations: 

e 
~j == AjL, Lko ==z; m] ==0);2 +h;2; P==;Z; q==ekx 

equations (12) can be written as 

j)j tan ~j == z; j=1, .. 3 (13) 

From the first equations in (13) one gets 

(14) 

and 

(15) 

The last equations in (13) imply that Pi, j= 1, .. 3 are solutions of the equation 

~ tan ~ == z, therefore the Pi will be functions of z and can be found by numerical 

computation. Thus, we need to solve only one equation (15) with respect to Z: 

f(z) == (m; - m;). ~;(z) + (m; - mi). ~;(z) + (m; - m~). j);(z) == 0 (16) 

where Pi(z), j= 1, 2, 3 are solutions of the equation ~ tan ~ == z, corresponding to the 

measured frequencies mj. Suppose that z* is a solution of (16), the parameters p and q 

can be calculated for the z· by the formulas (14) 

Furthermore, having z*, p. and q., we can determine the unknowns L, ko, kx from 

. Z· 
L == alP, k == U ,kx 

a"'<oJ p 

where m == pF . 

. . 
maz mq 

Ko == U K ==-. 
-V p' , x p 

A program has been written to carry out the proposed algorithm, and a numerical 

example has been constructed to verifY the program. Inputs for the program are: a, m 

and 0) ~, 0);, 0);, h;, h;, h;. In the results there are three parameters: L, Ko, Kx. In the 
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example, three cases have been studied, in each case one of the parameters takes 

different values and two others remain unchanged. Table 1 shows results of the 

identification compared with the initial values of that parameters. The results show that 

the method is accurate. 

Table 1 

Given Identified 

L (m) Ko(107 N/m) Kx (106 N/m2) L"(m) Ko" (107 K: (106 N/m2) 

N/m) 

10 2.94 2.94 9.99997 2.94955 2.94022 

20 2.94 2.94 20.0002 2.9402l 2.94002 

30 2.94 2.94 29.9999 2.94010 2.94002 

40 2.94 2.94 40.0006 2.94067 2.93999 

50 2.94 2.94 50.0006 2.94070 2.93998 

20 l.47 2.94 19.99992 l.46975 2.94006 

20 2.94 2.94 20.000l7 2.94024 2.94002 

20 4.4l 2.94 19.99990 4.4100l 2.94005 

20 5.88 2.94 20.00030 5.88l32 2.93995 

20 7.35 2.94 20.00029 7.35l82 2.93986 

20 l.47 2.94 19.99994 l.46977 2.94006 

20 l.47 5.88 19.99994 l.46976 5.88006 

20 l.47 8.82 19.99990 l.46976 8.82006 

20 l.47 l1.76 19.99990 l.46978 l1.76006 

20 l.47 l4.70 19.99990 l.46977 l4.70005 

4. Damage detection of pile 

Consider the damaged pile-soil system as shown in Fig. 2 with the parameters a = ~ , 
m=pF, L, Kx, ex, Ko assumed to be previously determined (Ko =00). Furthermore, let 

0) j, hj", j = 1, .. 3 be measured; the damage detection problem is to find three 

parameters: K, M = XrXj, x 0 = ~ (x I + X 2) denoting the damage degree, the length of 
2 

the damage and its position, respectively. For this purpose, the frequency equation (Il.d) 

is transformed into the form 

1 1 { 2 cos P (l - Xx) } 
k == 13 sin P(1 - ilx) + sin P(l - 2X-o ) 

(17) 
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where k = kL, /3 = AL, ~ = I1x/L, Xo = xo/L .Using the formulas (lO.c) with 

the given parameters one has 

(()~2+h~2 
(.l~ = L I I k . 123 1-'1 2 - x' ) = , , 

8 
(18) 

as given data for the damage detection. Thus, 11x, Xo can be found from the two 

equations 

(19) 

where 

Thereafter, the damage degree k is calculated by (17) using the solution ~x', x 0 of 

the equations (19). The system of equations (19) may be solved by one of the well 

known numerical methods. However, because of the error in either measurements or 

computation the system of equations (19) may have no solution. To overcome the later 

case we must chose another approach that will be given below. 

Introducing following notations 

a = (aI' 8 2, 8 3 )T 6 = (~, b2, ~)T 
2 3 

161 = 'L b/, 
j~l, 

3 

(a, 6) = 'L8A (20) 
j~1 

8 j = cos/3; (1- ~), 

bj = /3; [Sin /3; (1- Xx) + sin /3; (1- 2Xo)] j = 1,2,3 

system (19) implies existence of a scalar a such that 8 = a 6. This condition leads to 

the equality E(xo'~) == la1 2 .161 2 
- (8,6)2 = 0, that must be satisfied by the solution 

of equations (19). Of course, due to measurement error the function E(xo' Xx) > 0 . 

Therefore, we can find an approximate solution of the system (19) by solving the 

optimisation problem 
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min E(xo• ~); \f(xo• ~) EG = {o:::; ~ < 1;0 < Xo < I} (21) 

F or the obtained approximate solution ~., x~ the damage magnitude will be 

found by the formula 

(22) 

This approximation solution will be the exact one if measurement is free of noises. 

An example has been investigated to illustrate the proposed procedure; results of the 

damage detection problem are given in Table 2. The error function E(xo• ~) is plotted 

versus )(0 for Ax == 0.05 and versus Ax for )(0 = 0.5 and given in Fig. 3, 4. A 

minimum of the function is clearly defined as shown in the graphics and it is very close to 

zero because in this particular case no measurement error has been assumed. This 

solution is exact one. 

0.006 

0.004 

0.002 

E L'.x=O.05 

Xo 
O.OOO+--~-t--~--'f-~~-+~~j 

0.1 03 0.5 O~ O~ 

Figure 3 

Table 2. 
Given 

11k L'.x )(0 

0.1 0.05 0.5 

0.2 0.07 0.2 

0.3 0.09 0.6 

0.4 0.Q3 0.8 

0.5 0.01 0.3 

E Xo=0.5 
1.0E-

8.0E-

~~+-~~~+-~+-~~.x 
0.02 0.04 0.06 0.08 0.1 

Figure 4 

Identified 

l/k L'.x )(0 

0.09998 0.05000 0.50000 

0.20000 0.07000 0.20000 

0.30001 0.09000 0.60000 

0.40001 0.03000 0.80000 

0.49995 0.01000 0.30000 
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5. Conclusion 

This report presented some results in the parameter identification and damage detection 

for a pile-soil system. First, a general model of the pile-soil system was introduced to 

describe not only the pile and the soil, but also the damage of the pile. The damage was 

modelled by an axial spring, and the length of the damage is also an unknown parameter. 

For the soil a distinction was made between the stiffness of the soil surrounding the pile 

and the soil at the lower pile edge. Next, by dynamic testing approach two problems 

were solved for the pile-soil system: the model parameters identification for undamaged 

pile; and the damage detection when soil parameters are given. 

The research results have been implemented in a project for assessing and 

evaluating the technical condition of the girders and pillars of a series of bridges in 

Thaibinh province, Vietnam. 

Acknowledgement: The work has completed with the support from the Vietnam National 

Program for Basic Research in Natural Sciences. 

References 

1. Adams R. D., Cawley P., Pye C. 1. and Stone B. 1.: A vibration technique for non­

destructively assessing the integrity of structures, J Mechanical Engineering SCience, Vol. 

20, No.2 (1978),93-100. 

2. Narkis Y.: Identification of crack location in vibrating simply supported beams, J of Sound 

and Vibration, Vol. 172, No 4 (1994), 549-558. 

3. Haisty B. S. and Springer W. T: A general beam element for use in damage assessment of 

complex structures, J of Vibration, Acoustics, Stress and Reliability in Design, Vol. 110, 

July 1988, 389-394. 



www.manaraa.com

ON NUMERICAL METHODS FOR CONSTRAINED MECHANICAL 
SYSTEMS 

NGUYENNHAT LE, DINH VAN PHONG, DO SANH 
Department of Applied Mechanics, Hanoi University of Technology 

1. Introduction 

The dynamics of complex mechanical system is becoming increasingly important. 
Detailed descriptions are needed for physical processes occurring in machines, robots 
and other multibody systems, see [11], [14], [15]. Accuracy must be maintained as 
computational volume increases. Many mechanical systems are controlled by programs. 
The controlling quantities are reaction forces corresponding to constraints. Numerical 
errors in computations may lead to violation of these constraints; the level of violation 
depends on the complexity of the system and the nature of the constraints. 

The equations of motion of complex mechanical systems may be expressed in 
many ways, but only some of them lead to accurate modelling of the constraint 
reactions. This article reviews various alternative formulations of the problem and 
illustrates results derived from them. 

2. The motion equation of a mechanical system 

Consider the motion of a mechanical system. The configuration of the system is 
described by n Lagrangian coordinates qi , i = 1 , ... ,n or in the matrix form by the vector 
q = [qi]T (the symbol T denotes transpose) . The kinetic energy of this mechanical 
system can be expressed as: 

T 1. T A . 
= - q q 

2 
(1) 

where A is a nxn matrix, symmetric and nonsingular, depending only on the coordinates 

qi, it means: A = A( q). q is the n-vector of generalized velocities: q = [q J. The 

generalized forces, corresponding to generalized coordinates are denoted by C i= I , ... ,n 
or in the matrix form by the vector f = [fi( 

Assume that we have s constraints applied to the system and they have the 
matrix forms: 

g(q,q ,t)= 0 

where g is an sxI matrix. The constraints (2) could be holonomic or nonholonomic. 
207 

(2) 



www.manaraa.com

208 

Firstly, we can write the equations of motion of system with the well-known 
Lagrange multipliers. Assume that the constraints (2) can be expressed in the following 
form: 

(3) 
where B is an sxn matrix and bo is an sx I matrix. The elements of these matrices are 
the functions of the generalized coordinates and generalized velocities. The equations 
of motion of system with multipliers can be written in the form, see e.g. [10], [13]: 

~ aT _ aT = f + BrA 
dt aq aq 

(4) 

where ~ is the column vector of unknown Lagrange multipliers A = [AI, A2, ... , As]T . 
The equations (3) and (4) create a system of (n+s) equations. The (n+s) 

unknowns are qi, i=l, ... ,n and Aj ,j=I, ... , s. 
The great advantage of this system of equations of motion is the fact that they 

can be written easily. But on the other hand the solution of the whole system of (n+s) 
equations is not so easy and moreover the initial values of Aj , j=I, ... s are unknown. 
Other difficulties, e.g. the problem of violation of constraint equations, appear when 
investigating large mechanical system or systems with many equations. 

Another possibility is the principle of compatibility [6]. Using this method we 
first write the system of equations for determining the constraint reactions: 

G. r + b = 0 (5) 
D. r = 0 (6) 

In these equations r =[rl, r2 , ... ,rn]T is the vector ofreaction forces. G is an sxn matrix, b 
is an sxI matrix. They are calculated according to the formulas: 

G = B. A-I, b = G. f+ B. '" (7) 
where \If is the nxi column matrix of Christoffel symbols of the first kind (3 indices). 
In equation (6), D is a (n-s)xn matrix of coefficients relating the generalized 
accelerations with independent accelerations, [6 ]. 

After completely determining r from (5) and (6), the equations of motion of the 
mechanical system are represented in the form: 

A q =h+f+r (8) 
in which h is a nxi matrix and its coefficients are determined from the inertia matrix A. 

In this method we can separate the investigation of the system motion into two 
steps, and in each step the number of equations is only n. From (5) and (6) one 
sometimes obtains the analytical formulas for reaction forces: 

r = r (t,q, <i) (9) 

especially when using the symbolic computation. This can help us to understand the 
structure of the reaction forces. The numerical alternative of this method is described in 
[4]. The system of equations (5), (6), (8) is solved simultaneously by using numerical 
methods. Moreover the components of reaction forces corresponding to each constraint 
can be also calculated. 

The drawback of using (7) is the matrix inversion. For large mechanical systems 
this operation may lead to unacceptable numerical error, and as in the use of 
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Lagrangian multipliers, the violation of constraints. In order to overcome this problem 
we can proceed as follows, [5], [7 ], [8 ]. 

Write the motion equation of system in the form 
Do q = ho + fo (10) 

where Do is a (n-s)xn matrix, ho and fo are (n-s)xl matrices. They are calculated 
according to the formulas: 

Do=D.A, ho=D.h, fo=D.f (11) 
The equations (10) and (2) create a system of differential-algebraic equations. 

This system enables us to determine the time history of the system motion from 
predetermined initial conditions: 

q = q(t), it = it (t), q = q (t) (12) 
The reaction forces of constraints r are determined from the equation: 

ret) = A(t) . q (t) - h(t) - f(t) (13) 
The advantage of this procedure is that the equation of motion does not include 

the reaction forces explicitly; they are evaluated from (13). Therefore the initial values 
of reaction forces are not required. Note also that the mixed system of differential­
algebraic equations (10) and (2) has only n equations; this makes the integrating process 
easier and more accurate. The system of differential equations (10) includes only a 
minimal set of (n-s) equations, i.e. the number of degree of freedom of the system under 
consideration. On the other hand these equations require the determination of the 
coefficient matrices hand D. Some algorithms for their construction are described in 
[3], [5], [7], [8]. The algorithm in [3] is based on the solution of a linear system of 
algebraic equations. The processing is purely numerical so all operations with matrices 
are carried out repeatedly for each time step. Another algorithm suitable even for 
symbolical processing is developed in [5]. The advantage of this technique is that the 
matrix D can be derived symbolically only once at the beginning of the integration 
process; the equation of motion of the system has an exact analytical form which is 
simply evaluated at each time step. The process of finding DT= [d 1, d2, ... ,dm], (m=n­
s), consists of two steps. In the first the Gram-Schmidt orthogonalization is realized, and 
in the next the orthonormal vector system is created and nx 1 column matrices d; , 
i=l, ... ,m, are found. 

3. Computer implementation 

The first problem is the choice of integrating methods. Our system of equations of 
motion is a system of differential-algebraic equations (DAE's) that differs in significant 
ways from ordinary differential equations (ODE's). Applying ODE methods such as 
Runge-Kutta to DAE's can have drastic consequences. 

In conventional procedures one uses the derivative forms of constraint 
equations, in which accelerations appear explicitly, e.g. (3). So first, generalized 
accelerations q are calculated from other quantities, e.g. Lagrange multipliers. Then an 

explicit ODE's scheme can be applied to provide the integration. Clearly, the violation 
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of original constraints can occur and only derivative forms of constraint conditions are 
satisfied. Therefore some constraint violation stabilization methods should be used to 
achieve the stability of the integration process, [14]. 

An alternative technique considers the DAE system as a stiff system and uses a 
special integration scheme for stiff systems. Many examples have been tested and show 
good results with the formulas known as Gear algorithms. The great drawback of the 
formulas is that they are not, as other multistep algorithms, self starting, and always 
requires starting values 

In contrast, one-step formulas of Runge-Kutta's implicit method need only 
function values at one previous node, so are self-starting. Many implicit Runge-Kutta 
methods may be found in [1]. Many of them were tested and implemented in our 
program. For the simplest example, Gauss-Legendre quadrature q=2, order 4, gives 
stable results. For more complex problems, higher order algorithms are more 
convenient, e.g.Gauss-Legendre quadrature q=3, order 6 or another quadrature 
technique, Radau IIa with q=3, order 5 etc. 

The computer implementation of various methods of different orders involves 
the problems of step size, convergence and stability. So far it has been implicitly 
assumed that for given initial-values, a numerical integration algorithm of a certain 
order is selected and this order remains fixed during the entire integration process. 
Under this assumption the time step is calculated so as to obtain an acceptable 
numerical error, but the algorithm remains numerically stable. But from a practical point 
of view, changing the order (or algorithm) requires less effort than changing the time 
step. Increasing the order would require an increase in the number of coefficients; this 
corresponds to a small increase of storage space and computing time. Consequently, it is 
often more efficient to vary both the order and the step size during each time step. 
Moreover one specific algorithm may tally with some particular technical problem but 
not another. So it is reasonable to consider the possibility of changing the integration 
methods and step size automatically in the program. 

Defining the initial values is another question that deserves particular 
investigation. For n unknowns in a first-order ODE system we have just n initial values. 
The algebraic equations in the system reduce the number of initial values; at the start of 
integration process we need only the number of initial conditions that correspond to the 
degrees of freedom. On the other hand the numerical scheme requires initial values for 
all variables. So special preprocessing should be provided before the integration process 
begins. The algorithm implemented in our program is described in [2]. It is assumed that 
we solve the system of algebraic equations consisting of equations of motion and 
constraint equations. The initial values of coordinates, i.e. q and q, are derived from 

constraint equations and/or their derivative forms. The values of generalized reaction 
forces r, if needed, are calculated at the same time as the accelerations from the 
equations of motion and the derivative forms of the constraint equations in which 
accelerations appear explicitly. 

From this point of view the most advantageous concept is the modification of 
the principle of compatibility (10). No initial values of reaction forces are required, but 
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these quantities can be evaluated easily whenever needed during the integrating process, 
according to (13). 

Finally, we discuss symbolic versus numerical computation. Some algorithms 
for deriving the equations of motion, as shown in section 2, can be processed 
symbolically. This could avoid the numerical errors and save much computer time, 
since the particular forms are derived once at the beginning of integration process and 
then evaluated as needed for each time step. On the other hand, if the symbolic 
algorithm is weak, the final symbolic formulas may be too complicated, and the 
advantages disappear due to rounding errors. 

In the Department of Applied Mechanics of Hanoi University of Technology the 
software is based on the module DAESOL. The programming languages are C++ and 
FORTRAN 77. 

4. Example illustration 

4.1 EXAMPLE 1 

Consider the steering motion of an automobile in a horizontal plane, Figure 1a. The 
mass, the moment of inertia about the center, and the length are m, J and I (l=a+b) 
respectively. The force F acts along the lengthwise axis of the automobile. Choose the 
generalized coordinates x, y,<p, i.e. the coordinates of the mass center and the angle 
between the lengthwise and x axes. The controlling parameter is 8, i.e. the inclined 
angle of the front wheel plane with respect to the lengthwise axis. 

With 3 redundant coordinates, the kinetic energy of the system can be written 
easily: 

(14) 

The system is coupled by two nonholonomic constraint conditions: 
x sincp- ycos<p+b cj> =0 (15) 

x sin(<p + 8) - Y cos(cp + 8) - a cos8 cj> = 0 (16) 
In [9] the example is treated analytically with Lagrange multipliers. The equations of 
motions are presented in the forms: 

m x = F cos<p + Al sin<p + A2 sine <p + 8) (17) 
my = F sin <p - Al cos<p - A2 cos(<p +8) (18) 

J q) = A I b - A2 a cos8 (19) 

The solution of the system is complicated due to need for analytical forms of A I and A2. 
Numerical processing is more convenient but requires initial values of Al and A2. 

Now consider the principle of compatibility. As shown earlier, this technique 
includes the reactions forces, i.e. r = [rx, ry , rep], in the equations of motion. One of the 
key points is the determination of coefficient matrix D in equation (6). Two algorithms 
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can be applied when the coefficient matrix B is given, [3], [5]. Here we extract the 
results: 

[ 
sin<p -cos<p b] 

B= sin(<p+8) -cos(<p+8) -acos8 

D = [1 cote cos<p - b sin<p 1 cot8 sin<p + b cos<p 1] 
This gives the equations of motion according to the formulas (5), (6) and (8): 

sin <prx-cos <pry+ bm r<p +m(cos<p x +sin<p y) <i> =0 
J 

sine <p+8)rx -cos( <p+8) ry - am cose r<p+Fsine +m {[ cos( <p+e) x +sin( <p+e)Y]( <i> + e) 
J 

- asine <i> e } = 0 

(l cote cos<p - b sin<p) rx + (l cote sin<p + b cos<p) ry + r<p = 0 
m x = F cos<p + rx 

m y = F sin <p + ry 

J q; = r<p 

(20) 

(21) 

(22) 

(23) 

(24) 
(25) 
(26) 

(27) 

This system of differential-algebraic equations has 6 unknowns x, y, <p, rx, ry, r<p. 
The reaction forces appear explicitly. Since one can show the relation of these forces to 
the physical contact forces, they could be used for understanding the behaviour of the 
automobile. 

The disadvantage of this form, as in the case of equations with Lagrange 
multipliers, is need of determinate of initial values of x, y, <p, x, y, <i>, but also rx , ry , 

r<p . One must solve a system of nonlinear algebraic equations, in which the unknowns 
are rx , ry , r<p, x, y, q; at the beginning of the integrating process. 

In order to reduce the number of equations and to avoid the determination of 
initial values of reaction forces, we write the equations of motion as in the modification 
of the principle of compatibility (10). Since the matrix h is 

h=O ~~ 
and D is known, one easily gets from (10) and (11) the following equation: 

m (l cote cos<p - b sin<p) x + m (l cote sin<p + b cos<p) Y + J q; -Fl cote = 0 (29) 

Together with the constraint equations (15) and (16) we have 3 differential-algebraic 
equations for 3 unknowns x, y, <po Note that for the Lagrange equ,ations with multipliers 
the number of equations is 5, and for the original form of the principle of compatibility 
this number is 6. 

The system of equations (15), (16), (29) can be solved with DAESOL without 
any problem concerning initial conditions. The reaction forces are easily evaluated 
since (13) yields 

rx = m x -F cos<p, ry = m y - F sin <p, r<p = J q; (30) 

Now, we can simulate the automobile manoeuvres for various values of 
controlling parameter 8. Some interesting cases occur: 

- 8 is constant; 
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Figure la. Dynamical model of example 1 
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Figure lb. Trajectory of mass center C 
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Figure lc. Trajectory of mass center C 
for 8(t) = 0.1543sin(1.5708t+O.6008) 
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Figure Id. Time-history ofR, and Ry 
for 8(t) = 0.1543sin(1.5708t+0.6008) 

Figure 1. Parameters of example 1 : m = 20.103 kg; J = 5.103 kgm2; F = 200.103 N; a = 3 m; 
b = 1.5 m. Initial conditions: x = y = 0; <fl = 0; 8 = 0.0872 rad; X = 10 m/s; y = 0.2926 m/s; 

<P =0.1944 rad/s; e = 0.2 rad/s 
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1.: V' 
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o ---i x(m) 
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Figure 2a. Dynamical model of example 2 Figure 2b. Trajectory of mass center C 

Figure 2. Parameters of example 2: m = 20 kg; J = 1.6 kgm2; JI = J2 = 0.8 kgm2; K = 48 kgm2; 

a = 0.524 rad. Initial conditions: x = y = 0; <fl = <fll = 0; <fl2 = IOn rad; 8 = 1.047 rad; X = 2.5 rn/s; 

y = 0; <P = <PI = 7.217 rad/s; <P2 = 12.5 rad/s; e =0.2 rad/s 
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-e is constant; 
- 0 is a sinusoidal function. 
The numerical results of the two first cases coincide with the analytical 

invetigation in [9] and [11]. Figures 1 b, 1 c, 1 d show some results of our simulation. 

4.2 EXAMPLE 2 

Consider two cylinders, rolling without slipping on a fixed plane. The cylinders have 
the same radius a and their moments of inertia about generating lines are J I and J2 
respectively. A third cylinder rolls without slipping on the cylinders 1 and 2. The mass, 
radius and principal central moments of inertia of the third cylinder are m, b, K and J. 
The angle a between the axes of cylinders I and 2 is constant due to their rolling 
without slipping, Figure 2a. 

To investigate the motion of this system we choose 6 coordinates: x, y, 0, <p, <PI, 
<P2. The coordinates x and yare those of the center of the third cylinder on the fixed 
plane, 0 is the angle between its axis and the x-axis, <P is the angle of its rolling motion. 
<PI and <P2 are the angles of rolling motions of the cylinders I respectively 2. The 
coordinates are dependent, and the condition of rolling without slipping yields 4 
nonholonomic constraints: 

x - b sinO <P - (a <PI - y) e = 0 

y +acos8 <p +(a<pl-y)cot88 -2a <PI=O 

(31) 

(32) 

sin(8-a) x - bsinOsin(O-a) <P +2asinasin(8-a) <P 2 -(a<p2+xsina-ycosa)sinO e = 0 (33) 

sin(8-a) y -bcos8sin(8-a) <P -2acosasin(8-a) <P 2 +(a<p2+xsina-ycosa)cos8 8 = 0 (34) 

Again, the kinetic energy can be written very easily with redundant coordinates: 

T = M m(x2 + y2) + KS2 + J<p2 + JI<P~ + J 2<P;] (35) 

The equations of motion can be derived with Lagrange multipliers but they 
comprise a complicated system of 10 differential-algebraic equations, see [13]. 
Moreover the problem with the initial values of the multipliers reoccurs and the 
numerical solution of the system is difficult. We modify the principle of compatibility. 
From equation (10) one gets 

m(a<pI -y) X - ~[(a<pl-y)cosa-(a<p2 + xsina - ycosa)]y + K8 
sma 

+ I. (a<p2 + x sma - ycosa) - I. <PI 
J [ . (a<p -y)Sin(8-a)] .. 

2 r sma sm8 

+ . J ~ [(a<P2 + x sina - ycosa) sinO - (a<pI - y) sin(8 - a)] <P2 0 
2a sm a sm(O - a) 

(36) 

m b sinO x -m b cos8 y + J <p = 0 (37) 
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Together with (31)-(34) we have the mixed system of 6 differential-algebraic 
equations for 6 unknowns that can be solved numerically. The reactions forces, 
corresponding to generalized coordinated can be evaluated at each time step according 
to the equation (13) .. An example of numerical solution, giving the trajectory of the mass 
center of the third cyBnder, is depicted in figure 2b. 

5. Conclusion 

Formerly it was necessary to apply Lagrange equations with multipliers, or other 
techniques such was as Chaplyghin's equations or Woronetz equations etc. [9], [11], 
[13], when the expression of kinetic energy and constraints were written in 
quasicoordinates. But many problems occur for large systems. 

This article deals with various forms of the equations of motion, their 
implementation and solution. The concept of a system of differential-algebraic 
equations, including the algebraic constraint equations, appears very convenient for use 
in a stable and effective numerical integration scheme. 

The principle of compatibility in different forms enables a flexible realization on 
the computer. If needed, we can reduce the number of differential equations to the 
minimum and remove all reaction forces from the first direct stage of integration. In this 
manner we avoid the problem of initial conditions, and the integration is more efficient, 
and the reaction forces can be found. This has a great advantage over the conventional 
way which uses Lagrange equations. It should be emphasized that the equations of 
motion are written in the matrix form basing on only two quantities: the inertia matrix 
and the vector of generalized forces. 

A software package based on this method is being developed in the Department 
of Applied Mechanics of HUT. 

The publication is completed with financial support from the National Basic 
Research Program in Natural Sciences. 
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A TECHNIQUE FOR SOLVING NON-LINEAR SYSTEMS SUBJECT TO 

RANDOM EXCIT A nON 

NGUYEN DONG ANH - NINH QUANG HAl 

Institute of Mechanics 
224 Doi Can, Hanoi Vietnam 

A solution technique based on the representation of the response of the non-linear system by a polynomial 
in the response of the linearized system is presented. Extended moment equations are developed and their 
closed set is to be solved to detennine unknowns. For the Duffing oscillator subject to white noise 
excitation. the technique gives good approximation to the response moments as well as the probability 
density function and the power spectral density of the system response. 

1. Introduction 

Since all real engineering systems are, more or less, non-linear and for those systems the 
exact solutions are known only for a number of special cases, it is necessary to develop 
approximate techniques to determine the response of non-linear systems under 
excitations. Several books examine approximate techniques for solving deterministic 
and! or random vibration problems, for instance, see [1-2] and see [3-4], respectively 
This paper presents a solution technique based on the representation ofthe response of a 
non-linear system by a polynomial of the response of the linearized system. Extended 
moment equations are developed and their closed set is to be solved to determine 
unknowns. For the Duffing oscillator subject to white noise excitation the technique 
gives good approximation to the response moments as well as the probability density 
function and the power spectral density of the system response. 

2. Representation of the Response of Non-Linear System by a Function of the 
Response of Linear System 

It is well-known that a T-periodic continuous function z(t) can be approximately 
expressed by a finite summation of its Fourier series (see [5]) 

N 

z(t) = ~)cn cosllkt + sn sin llkt) (I) 
n- I 

217 
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where k = 21t/T and cn, Sn are Fourier coefficients. Using the formulas 

cosnkt == cosn kt - C~ cosn- 2 kt sin 2 kt + C: cosn- 4 kt sin 4 kt =+= ... 

sin nkt == C~ cosn- I kt sin kt - C~ cosn-3 kt sin 3 kt ± ... 

one can represent z(t) in a polynomial form of x(t) == coskt and x(t) == -k sin kt : 

N N 

z(t) == L Lanmxn(t)xm(t) 
n::::() ",:::0 

(2) 

(3) 

and U nm are coefficients depending on k, c\, SI, C2. S2, ... and dots denote time 
differentiation. Thus, a periodic function can be approximately represented by a 
polynomial of its first harmonics. Generalizing this property one can propose a 
technique for solving non-linear systems, namely, to represent the response of the non­
linear .5ystem by a polynomial (if the re,\ponse ~f the linearized .5ystem. 

In deterministic vibration problems this representation may be used for determining 
approximate periodic solutions, for example, of the differential equation of motion 

i+ f(z,i) ==0 (4) 

Namely, one can find z(t) in the form (3) where x(t) is a periodic solution of the 
corresponding linearized equation 

Example: Consider the Duffing oscillator 

i +z +6Z3 == 0 

An approximate periodic solution of(6) takes the form (see [2]) 

6 1 
z==acosrp+-a' cos3rp+ ... 

32 
, rp==kt+() 

where a, e are constants. One can rewrite (7) in the cubic polynomial as follows: 

36 2 6 3 
z==(l--a )x+-x +. ,x==acosrp 

32 8 

(5) 

(6) 

(7) 

(8) 

Analogously, in the field of random vibration one can propose a technique for 
solving random vibration systems using a polynomial of Gaussian process. It should be 
noted that the use of polynomials in non-linear vibration problems has been considered 
in the literature (see, for example [6-8]). 
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3. Extended Moment Equations and Polynomial Form for the System Response 

Consider the equation of motion of a single - degree - of - freedom mechanical system 

z+2hi+j3Z+f(z,fe):= (J"~(t) (9) 

where h is a positive constant, S is a constant, f(z, i) is a polynomial function or 

approximated as a polynomial function of z,i; ~ (t) is a zero mean white noise with the 

autocorrelation and spectral density given, respectively, by 

R(T) := < ~(t)~(t + T) > := (J"l5(r) and S(m):= (J"2 

2;r 

where 8(r) is Dirac delta function, < > denotes the expectation operator. For sake of 

simplicity we suppose <z> = 0 Together with (9) one considers the corresponding 
linearized equation 

(10) 

For an arbitrary up-to-second-order differentiable function cp(z, i, x, x) the extended 

moment equation corresponding to a stationary solution of (9), (10) has the form: 

oep . oep (2h' A f(')) oep . oep (2-h . -2) < -z > - < - Z + I-' z + z, z > + < - x > - < - x + 0)0 X > + 
& ili & ~ 

(Jl { 02ep a2 ep 02ep} 
+- <->+2<-->+<-> := 0 

2 oil ai~ ~2 

(II) 

The equation (11) is derived from Fokker-Planck equation (e.g. see [3]) 
Using (11) one can get, in the non-linear case, i.e., f ~ 0, a so - called infinite 

hierarchy of linear algebraic equations for the response moments in the sense that all 
finite sets of moment equations contain a number of involved unknown moments more 
than the number of equations (see [9-12]). Particularly, taking the 8 "lowest" 
polynomial functions cp(z, fe, x, x), and using the well-known definition: 

one has following equations: 

fi 1 ., 
or cp:= - z-

2 
- 2hm()7 - < fez, i)i > + (J"2 := 0 

- 2 
(12) 
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jor rp = zi 

jorrp = !.e 
2 

jorrp = xx 

jorrp = zx 

jorrp = xz 

jorrp = xi : 

jorrp = xi: 

m02 - {J m20 - < j(z, i)z >= 0 

- .2 (Y2 
2h <X >--=0 

2 

<xi>+<xz> =0 

< xi > -iii < xz > -050
2 < zx > = 0 

< xi > -2h < xi > -{J < zx > - < xj(z, i) > = 0 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(Y2 -2h<xi>-{J<xz>-<xj(z,i»-2ii <xi>-050
2 <ix>=O (19) 

The moment equations (12-15) are conventional ones for separated moments of z,i 

and x, x, while the moment equations (16-19) contain mixed moments of z, i ,x, X. The 

equations (14), (15) are used separately to determine linearized coefficients 

2 

Ii = _(y---:-_ 

4<.e> 

·2 
-2 <x > 
OJ ---

o - < x2 > (20) 

It is seen that moment equations (12 - 19) have higher order moments. To close a set 
of moment equations one needs some additional relationships between moments. For 
instance, in Gaussian closure one puts z(t) = x(t) and only 2 moment equations (12), 
(13) can be satisfied, namely, they are used to find <i> and < i 2 >. Thus, in Gaussian 
closure, in principle, only 2 equations from the hierarchy of moment equations can be 
satisfied. On the other hand, one might suppose that the accuracy of a closure technique 
would be better if more moment equations could be satisfied 

In the paper, we consider the following form of the system response 

(21) 

Substituting (21) into (16-19) shows that the equations (16), (17) are satisfied for any a. 
Thus, finally one has 4 equations (12), (13), (18), (19) for determining 4 unknowns 

< Xl >, < x2 >, Op O 2 . It is noted that, the solution of the problem must satisfy not only 

the moment equations but also must preserve moment properties such as non­
negativeness of even-order moments and satisfaction of Schwartz' inequality. The 
considered moment equations may yield a unique solution, multiple solutions or no 
solution. This matter should be investigated in other research Particularly, for Gaussian 
closure we may see[13]. The probabilistic characteristics of z(t) can be obtained from 
(21) ifx(t), ai, a2 are known. 
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4. Probability Density Function of Response (PDF) 

Using the expression (21) one can easily calculate the PDP of the response process z(t). 
In fact, the PDP ofx is known as: 

Px == exp {- x 2 / 2cr; }/ ~ 27rcr; (22) 

The probability distribution function of z is defined as 

F (y) = P {-oo -< Z -< y} (23) 

where P {E} denotes the probability of E. The PDP of z can be found as follows 

w_(y) = lim F=(y+Lly)-Fz(Y) = lim P{y-<z-<y+Lly} = lim _1 fpxdx (24) 
• Lly-->O Lly Lly-->O Lly i\y->O L1y d 

where the integration domain d takes the form 

Thus, a numerical procedure to determine this function can be established. 

5. Power Spectral Density of Response (PSD) 

The PSD is an important statistical characteristic of the stationary process. There are 
many investigations concerning with the PSD of the stationary response of non-linear 
stochastic systems (see [14-15]). Here using the expression (21) one can find the PSD of 
z(t). The higher moments of a Gaussian random process are related to its second-order 
moments by known equations (see [16]). Applying the properties of Gaussian process 
we can express the second order autocorrelation function of z(t) in terms of Rx (r) : 

Rz(T) = <z(t)Z(t+T» == <[x(t)+a]x3(t)+ a2x5(t)] 

[X(t+T)+a1x3 (t+T)+a2 x5 (t+T)]> == \f(R«T» 
(26) 

in which Rx(r) (the second order autocorrelation function of x(t» can be defined once 

the linearized equation (10) has been known (see[3]) The PSD ofz(t) is then defined as: 

(27) 

Based on the above-mentioned formulas, a numerical procedure for determining the 
PDS ofz(t) can be established. 
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6. Duffing Oscillator under White Noise Excitation 

To elucidate the proposed technique, consider the Duffing oscillator under white noise 

(28) 

6.1. MOMENT EQUATIONS AND POLYNOMIAL FORM FOR SOLUTION 

For sake of simplicity and due to the limited capacity of our computer to determine 

<x2>, <.e >,al , the solution of the equation (28) is taken in the form 

z(t)= x(t)+ax3(t) 

We consider 3 equations (12), (13), (18) which now, respectively, become 

()2 

2hm --=0 
02 2 

< x2 > -/3 < zx > -& < Z3 X > +3a < X2 >< x2 > = 0 

From (29), (30) in the case where ()2 / 4h = I, after simple calculation one gets: 

(29) 

(30) 

(31 ) 

(32) 

(33) 

Denoting y =< X2 >, using (29), (33) after some calculation, it follows from (31), (32): 

1 (.I (.I 2 3 2 5(.1 2 3 6 3 2 4 3 5 4 6 -l-'y-6I-'ay - I>y -I I-'a y - Oeay -630ea y -3780ea y -I 0395ea y = 0 

1 + 3ay-py-9pal-3I>l-45 pa2l-63I>al-81 pa3y 4_666ea2/_4050ea3/_ 

-14175I>a4/-25515ea5/ = 0 

(34) 

(35) 

for 2 unknowns: y and a. For these equations, the moment properties such as non­

negativeness of even-order moments and satisfaction of Schwartz' inequality are used to 
exclude some extraneous solutions. Finally, the second moment m20 (or <i» can be 
calculated from (29). The results <i> obtained by the proposed procedure and that 
obtained by Gaussian closure with the values p =1 and p = -1 are compared in Table 1 
and Table 2 for (52 = 4h and different values of 1>, respectively. It is seen that the 
proposed solutions <i> are much closer to the exact solutions <Z2>E than the solutions 
obtained by Gaussian closure <X2>G except the case of small I> (I> = 0 1) and p = 1. 
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TABLE 1. Approximate mean squares of response of the Duffing equation with ~ = 1 (Unimodal case). 

N I> <Z2>E <x2>G <Z2> a <x2> 

1 0.1 0.8176 0.8054 C-l.49%) 0.6059 (-26%) -0.1236 1.5034 
2 1 0.4679 0.4343 (-719%) 0.4466(-454%) -0.1424 0.9846 
3 10 0.1889 0.1667 C-l1.8o/~) 0.1909 (1.03%) -0.3207 0.4000 
4 100 0.0650 0.0561 (-13.6%) 0.0663 (1.96%) -0.9135 0.1368 

TABLE 2. Approximate mean squares of response of the Duffing equation with ~ = -1 (Bimodal case). 

N g <Z2>E <X2>G <i> a <x2> 

1 0.1 8.7136 4.1387 (-52.5%) 6.2556 (-28.2%) -0.0089 11.543 
2 1 1.0418 0.7676 (-26.3%) 1031 (-1.04%) -0.0562 2.0026 
3 10 0.2435 02 (-179%) 0.2497 (2.53%) -0.2379 0.5020 
4 100 0.0704 0.0594 (-15.6%) 0.0722 (2.5%) -0.8311 0.1470 

6.2. PROBABILITY DENSITY FUNCTION OF RESPONSE 

The PDF of the response of the bimodal Duffing oscillator is investigated, for example, 
in [17]. Herein, the PDF is calculated from (24) where the formula (25) takes the form: 

d = {x : y < z = x + a x3 < y + i'ly} (36) 

and 0'; = < x 2 > is found from (34-35). 

The graphs of exact probability density function, of that obtained by the Gaussian 
closure atld by the proposed procedure are shown in Figures I-a, I-b, 2-a, 2-b. It is seen 
from these Figures that in comparison with the PDF of the Gaussian closure, the graphs 
of PDF of the proposed method are closer to the exact ones. In the bimodal case the 
graphs of PDF obtained by the proposed technique do not have two extremes. That is a 
shortcoming of the procedure. However, as is seen from Figures 2-a, 2-b, the proposed 
method gives a better prediction for PDF than the Gaussian closure does. 

6.3. POWER SPECTRAL DENSITY 

The power spectral density of the Duffing oscillator to white noise excitation is 
investigated in [15] and the third harmonic peak is shown using other approach. Here, 
using (29) we have 

Rz (r) = < z(t)z(t + r) >=< [x(t) + ax3 (t)][x(t + r) + ax3 (t + r)] >= 

:::: R~2)( r) + aR.;4) ( r, r, r) + aR;4\0,0, r) + a 2 R;6) (0,0, r, r, r) 
(37) 
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Unimodal Case: 

-1.5 -1 -0.5 0.5 1 1.5 -0.75 -0.5 -0.25 0.25 0.5 0.75 

Figure i-a p= i, 8= iO. Figure i-b p= i, 8= iOO. 
i-The PDF o/proposed method, 2-The exact PDF, 3-The PDF o/Gaussian closure 

Bimodal Case 

-1.5 -1 -0.5 0.5 1 1.5 0.75 -0.5 -0.25 0.25 0.5 0.75 

Figure 2-a p = -i, 8 = 10. Figure 2-b P = -i, 8 = iOO. 
i-The PDF o/proposed method, 2-The exact PDF, 3-The PDF o/Gaussian closure 

Applying the properties of Gaussian process yields 

It follows: 
6 2 +00 

Sz(m) = (1 + 6a < X2 > +9a2 < X2 >2)Sx(m) + ~ f[RJr)f cosmrdr (39) 
7r 0 

where R)r) and Sx(m) are formulated (see [3]). 

Finally, from (20), (33) one gets the coefficients of the corresponding linearized 

equation Ii and wo2 , in the case (J2 = 1, as follows: 
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(40) 

The graphs of the PSD are shown in Figs. 3-a, 3-b and FigsA -a, 4-b, respectively. 

0.6 0.8 1.2 1.4 1.6 1.8 2.5 3 3.5 4.5 5 

Figure 3-a fJ ~ 1, £ ~ 1. The jirst harmonic peak Figure 3-b fJ ~ 1. £ ~ 1. The third harmonic peak 
of Duffing oscillator. of DUffing oscillator. 

1-The PSD of the proposed method. 2-The PSD of the Gaussian closure. 

0.2 

0.15 

0.1 

2 
0.05 

0.002 

1.2 1.4 1.6 1.8 2 2.2 2.4 2.5 3.5 4 4.5 5 5.5 6 

Figure4-a fJ=-I. £=10. Thejirstharmonicpeak Figure 4-b fJ~-I. £~IO. The third harmonic 
of DUffing oscillator. peak of Duffing oscillator. 

1-The PS'D of the proposed method. 2-The PS1) of the Gaussian closure. 

It is seen from Fig. 3-b and Fig. 4-b that the proposed technique can also give the 
third harmonic peak, whereas the Gaussian closure can not. 

6. Conclusion 

The main idea of the proposed technique is to represent the system response by a 
polynomial of Gaussian process and the application is then simplified by using the so-
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called extended moment equations involving mixed moments of the original non-linear 
and linearized systems. Thus, a possible way to determine the polynomial coefficients 
and the Gaussian process can be derived. The technique is quite simple since it can use 
properties of the Gaussian process although the calculations are more complicated than 
the Gaussian closure. However, the technique should be tested for other non-linear 
systems and some related questions may occur: Which set of extended moment 
equations and which form of polynomials should be chosen to get a better approximate 
solution? 
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ON THE IDENTIFICATION OF NONLINEAR SYSTEMS 

K. POPP AND J.-U. BRUNS 
Institute of Mechanics, University of Hannover 
Appelstrasse 11, 30167 Hannover 

1. Introduction 

In many engineering disciplines the identification of dynamical systems from 
measured signals is an important task in the modelling process. If informa­
tion on the structure of the system is available, the task is reduced to the 
identification of parameters. Often, however, either such information is not 
available or the system structure is known but is very complex and the 
relevant part of the structure is not easily discerned. As a first step in the 
identification process two questions will then have to be addressed: 

• How complex does the model have to be? How many state variables 
are required to describe the system's behaviour? 

• Is a simple linear model sufficient or do complex nonlinear models have 
to be considered? 

In this paper the second question will be dealt with. 

2. Detection of nonlinearities 

Every real dynamical system contains nonlinear elements to a certain ex­
tent. The modelling process should therefore be preceded by a {non-) linearity 
test to answer the question whether the system can be adequately described 
by a simple linear model or not. 

In its simplest form such a test only examines whether the hypotheses 
of a linear model can be accepted or has to be rejected. If the system 
under investigation is found to be nonlinear, the test results may also give 
additional information on the type of nonlinearity reflected in the system 
dynamics. 

Table 1 gives an overview on a selection of linearity tests that can be 
found in the literature. The overview is by no means complete and the 
reader is referred to [6],[12],[1] and [5] for further references. 
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TABLE 1. Overview on linearity tests 

Output signal Input/Output signals 

• Testing for stochastically • Superposition of input signals: 
excited linear system [6] 
(Keenan/Tsay) [8, 131 Ul -t Yl, U2 -t Y2 

Time • Method of Internal Harmonics ::} Ul + U2 -t Yl + Y2 

domain Cross-Correlation (Diment- • Identification of 
berg/Sokolov /Haenisch) ARM AX-models before and 
[4,3] after filtering [9] 

• Bispectrum test [11, 7] • Hilbert transform [10] 
G = 1£(9) 

Frequency 
• Total harmonic distortion 

a~+a~+ ... domain THD= a~+a~+a~+ ... 

• Linear spectral density [2] 
ISUlI1 2 = Suu * Slill 

The tests have been classified with respect to two aspects of the testing 
procedure: 

• Does the test require input/output signals or just output signals? 
• Is the test performed in the time or frequency domain? 

The test involving the Hilbert transform and the Method of Internal 
Harmonics Cross-Correlation are considered in the following sections. The 
underlying ideas as well as simulation results will be given. 

2.1. HILBERT TRANSFORM OF FREQUENCY RESPONSE FUNCTION 

The application of the Hilbert transform to characterize nonlinearities in 
mechanical structures is described in [10], the initial suggestion that the 
Hilbert transform might be useful in detecting nonlinearity was given by 
Vinh. 

The transfer function, G (s ), of a linear system can be considered as an 
analytic function in the complex s-plane. Cauchy's formula allows one to 
express its value at s = 0' + iw by evaluating the integral along a closed 
contour, r, as long as s is inside r, 

G(s) = ~ 1 G(s*) ds*. 
2m Jr s* - s 

(1) 
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r 

Re[s] 

I s-pl:me I 

Figure 1. Integration path r used to evaluate the value of the transfer function G(s) 
at s = iwc using Cauchy's formula. The poles of G(s) in the left half plane and the extra 
pole at s = iwc are avoided. 

With G(s) representing a stable system all the poles of G(s) are in the left 
half of the complex s-plane and G(s) is therefore analytic on the right half 
plane. Figure 1 shows a contour r that avoids the poles in the left half 
plane and the extra pole introduced by evaluating (1) at s = iwe. 

Dividing the integration path r into two parts, 

1 = 1 + 1 , 
lr lABC lCA 

(2) 

leads to a significant simplification; as the radius, R, of the semicircle 
ABC tends to infinity, the first integral on the right hand side of (2) tends 
to zero. This leaves only the integration along the imaginary axis of the 
s-plane, the w-axis, 

. 1 100 G(iw) 
G(ZWe) = --:P.V. dw, 

7rZ -00 W - We 
(3) 

where P.V. indicates Cauchy's Principal Value of the integral. Because of 
the similarity between (3) and the definition of the Hilbert transform of a 
real function, f (x), 

+00 

1i{J(x)} = !:.! f(a) da, 
7r x - a 

(4) 
-00 

the Hilbert transform of a transfer function has been defined as, cpo [10]: 

1i{G(iwe)} = H(iwe) = -~P.V. roo G(iw) dw. (5) 
7rZ i-oo w - We 
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Figure 2. Simulated frequency response functions G (iw) of nonlinear oscillators and their 
Hilbert transforms H(iw), (a) progressive spring stiffness (b) degressive spring stiffness 
( c) Coulomb friction 

Applying the Hilbert transform as defined in (5) to the transfer function 
G(s) of a linear system does not change G(s). Thus, the identity of G(s) 
and its Hilbert transform H(s) can be used to detect nonlinearities from 
frequency response data. 

By splitting (5) into its real and imaginary part and considering the 
symmetries of transfer functions, 

Re{G( -iw)} - Re{G(iw)} 

Im{G( -iw)} = -Im{G(iw)} 

(6) 
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the integration can be limited to the positive frequency axis: 

+00 
. 2 J wlm{G(iw)} 

Re{G(lwc)} = --P.V. 2 2 dw 
1r W -w o c 

(7) 

+00 
I {G(· )} - 2wcp V I Re{G(iw)} d m IWc - .. 2 2 w. 

1r W -w o c 

Obviously, the frequency response function of a real system can in gen­
eral only be measured in a frequency range WI ::; w ::; wu , but a good 
approximation of (7) can often be calculated based on a broad enough 
frequency range. 

Additional correction terms to compensate for the lower and upper fre­
quency ranges that cannot be measured are described in [10]. The correc­
tion terms ar~ based on modal parameters that can be identified from the 
measured frequency response data. 

Figure 2 shows the results of the Hilbert transform applied to simple 
damped nonlinear oscillators containing different nonlinear elements: 

• Progressive/ degressive spring stiffness 
• Coulomb friction. 

For these types of nonlinearity, the Hilbert transform H of the simu­
lated frequency response functions shows characteristic deviations of the 
frequency response function G. 

2.2. METHOD OF INTERNAL HARMONICS CROSS-CORRELATION 

The Method of Internal Harmonics Cross-Correlation is described by Di­
mentberg in [4, 3]. It is assumed that the system under study is excited by a 
broadband signal and that only the system's output can be measured. The 
particular system considered is a one degree of freedom mechanical system 

x + 2ax + f(x) = ((t); f(x) = w5x + g(x) (8) 

where f(x) is a possibly nonlinear restoring force and ((t) is Gaussian white 
noise. If the system is linear, the frequency components in the output signal 
are independent because the frequency components at the input are inde­
pendent (Gaussian white noise). In a nonlinear system oscillations contain 
additional frequency components at the higher harmonics of the fundamen­
tal frequency. The output of a nonlinear system that is excited by a white 
noise signal should therefore show correlation between the slowly varying 
amplitudes of components at the fundamental frequency of the system and 
its higher harmonics. The procedure outlined in [4] involves filtering the 
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Figu.re 3. Normalized cross-correlation factors P12 (a) and P13 (b) for an oscillator with 
progressive spring-stiffness, Pl3 significantly increases with parameter {3 of nonlinearity 

output signal x(t) by a pair of band-pass filters that are tuned to main fre­
quency Wo and a higher harmonic kwo, respectively. Then, the slowly vary­
ing amplitudes (AI and Ak ) of the filtered signals are extracted and their 
zero-mean parts cross-correlated. The normalized cross-correlation factor 
Pik is then defined as 

(9) 

Here, the mathematical expectation is denoted by (.). Figure 3 shows PI2 

and PI3 as calculated for a simulated oscillator with a progressive spring­
stiffness 

x + 2Dwox + (w5 + {3x2 )x = ((t) (10) 

with D = 0.01, Wo = 21l' and ((t) being Gaussian white noise of variance 
O'~ = 1. The relative filter-bandwidth (filter-bandwidth divided by center 
frequency) used was 0 = 0.1 and the main frequency, which depends on (3, 
was selected automatically from the FFT of the output signal. For this type 
of nonlinearity only odd harmonics occur which is reflected in a significant 
amount of correlation between the main and the third harmonic , P13. 

The second example was given in [4] and describes a system with a 
"flapping" crack represented by a piecewise linear restoring force f (x) in 
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Figure 4. Normalized cross-correlation factors Pl2 (a) and Pl3 (b) for a mechanical 
oscillator with crack-type nonlinearity. 

the model described by equation (8): 

{ w2x for x ~ Xo 
f (x) = w~ x + (w5 - wn Xo for x > Xo ' Wo > WI (11) 

The difference 1 - wI/wo is a measure of the nonlinearity of the system 
and may be related to the crack depth whereas Xo is the threshold value 
at which transition from the "hard" to the "soft" spring occurs. Increasing 
this value reduces the nonlinear character of the system. The crack-type 
restoring force (11) contains odd and even components, therefore odd and 
even higher harmonics occur. 

Figure 4 shows the normalized cross-correlation factors PI2 and PI3 ver­
sus wI/woo As this ratio changes from 0.6 to 1.0 the system becomes more 
linear which is reflected in the decreasing value of P12. The curves in the 
diagram belong to different values of the normalized threshold f. = XO/Ulin. 

Here Ulin denotes the standard deviation of the linear system excited by 
Gaussian white noise. As expected, increasing the threshold f. reduces the 
systems nonlinearity because the timespan in which the "soft" spring is 
active is reduced. 

The factor PI3 is smaller than PI2 and indicates significant nonlinearity 
only for f. = O. The results agree qualitatively with the results presented 
for this system in [4] although a different implementation of the algorithm 
was used to produce the results. 
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3. Conclusions 

After a brief overview on nonlinearity tests in the literature two methods 
have been considered and numerical examples have been shown. Both tests 
require only experimental data that is readily available in most experimen­
tal set-ups. The test based on the Hilbert transform requires frequency re­
sponse data from a frequency sweep while the test based on cross-correlation 
of higher harmonics relies on output measurements of stochastically excited 
systems. The second test is suitable for a wider range of applications be­
cause the system's input does not necessarily have to be controlled. This is 
e.g. important in the investigation of flow induced vibrations. The prelim­
inary results show that certain types of nonlinearity can be detected and 
the Hilbert transform is also able to distinguish between them. 

Further investigations considering more complex models are necessary 
and the usefulness of the test has to be verified in real experiments. 
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Abstract. Reduction methods and the resulting models for studying nonlinear 
vibrations of shallow monodimensional continuous systems are discussed. Primary 
resonances of the first mode of buckled beams and suspended cables are investigated. 
The convergence of the relevant Galerkin-reduced models with variation of the nondi­
mensional buckling level (buckled beam) and the elasto-geometric parameter (cable) 
is analyzed. For low values of the control parameter, one-dof models (with the first 
relevant linear eigenmode) are sufficiently accurate, whereas, for higher values of the 
parameter (above the first crossover), three- or higher-dof models (with the lowest 
relevant symmetric eigenmodes) are the minimum reduced-order models that can 
capture qualitatively the symmetric planar dynamics of the original systems. The 
major modification of the mode shapes of the lowest symmetric modes with respect 
to the initial nonlinear static shape, due to crossover and snap-through-type bifur­
cations, is highlighted as the key mechanism for the breakdown of low-dimensional 
models. 

1. Introduction 

The local dynamics of a shallow mono dimensional self-adjoint system around 
its initial curved configuration are governed by a set of integral-partial-differential 
equations and associated boundary conditions with quadratic and cubic geometric 
nonlinearities. It has been shown (Nayfeh et al. [1]; Pakdemirli and Boyaci [2]; 
Lacarbonara [3]) that direct attack of the equations of motion with a reduction 
method, such as the method of multiple scales, and application of the same method 

235 



www.manaraa.com

236 

to the associated <Xl-dimensional Galerkin-discretized models (obtained with the rel­
evant base of the eigenmodes of the linearized problem) lead to the same asymptotic 
dynamics. These results show that, in principle, all of the mode shapes from the 
pertinent eigenspectrum contribute to the nonlinear motions arising from a primary 
resonance of a mode that is not involved in internal resonances with other modes. 

Lacarbonara et al. [4] showed that the direct approach yields, for high buckling 
levels, results in agreement with the experimental response of a fixed-fixed first­
mode buckled beam to a primary resonance of its first mode, whereas low-order 
Galerkin-reduced models lead to qualitatively erroneous results. Further, Rega 
et al. [5] showed that the direct procedure and a four-mode discretization yield 
slightly different bifurcation patterns for multiple resonances in suspended cables. 
To overcome the shortcomings of finite-dimensional Galerkin discretizations, Nayfeh 
[6] developed a novel technique for constructing reduced-order models of nonlinear 
distributed-parameter systems. 

Here the problem of convergence of Galerkin-reduced models for primary res­
onances of the first mode of fixed-fixed first-mode buckled beams and suspended 
cables is addressed. The associated issue of extracting appropriate low-dimensional 
models from the original systems is discussed. It is shown that one-dof models 
(with the first relevant directly excited eigenmode), contrary to the common intu­
ition, breakdown in some ranges of the buckling level (buckled beam) or the elasto­
geometric parameter (cable). In these ranges, three- or higher-dof models (with 
the lowest relevant symmetric eigenmodes) are the minimum reduced-order models 
that can capture, at least qualitatively, the correct planar dynamics of the original 
systems. 

2. A Class of Shallow Elastic One-Dimensional Systems 

Nonlinear vibrations of shallow elastic continuous systems around their initial static 
configurations are governed, in nondimensional form, by 

u + LU = ~h(u, u) + g3(U, u, u) - cit + F(s, t) (1) 

subject to the linear homogeneous boundary conditions B( u) = O. In Eq. (1), s 
is the coordinate along the horizontal projection of the centerline of the system; 
the overdot indicates differentiation with respect to dimensionless time t; u(s, t) 
is, in general, a three-dimensional vector of dynamic displacements measured from 
the curved configuration; L is a linear, homogeneous, self-adjoint, positive-definite 
integral-differential operator; g2 and g3 are quadratic and cubic geometric operators; 
and F (s, t) is the forcing function. The nonlinear operators are non-commutative; 
i.e., g2(V,W) =I- g2(W,V). 

By virtue of the symmetric nature of the linear unforced undamped problem, 
the eigenfunctions 1>m (s) are mutually orthogonal and we assume they have been 
normalized such that Jol 1>m(S)1>n(s)ds = omn and J~ 1>mL1>nds = w;omn where 
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bmn is the Kronecker delta. The eigenvalue problem governing the frequencies and 
associated mode shapes is 

£[¢; w] = (L - w2I)¢ = 0, B(¢) = ° 
where I is the identity operator. 

For planar vibrations of a shallow arch with initial shape w( s) and an end-load 
p, 

LV = v'''' + Pv" - 'ljJ" t v'1j/ds, P = p + ~ t (w,2 - 'ljJ'2) ds (2) 

~h(v, v) = v" rl v''ljJ'ds + ~1/J" t v'2ds, Q3(V, v, v) = ~v" rl v'2ds (3) Jo 2 Jo 2 Jo 
where v denotes the transverse dynamic deflection measured from the shallow static 
nonlinear configuration 'ljJ; and the prime indicates differentiation with respect to s. 
For an initially straight nth-mode buckled beam, we put P = Pc in Eq. (2), where 
Pc is the nth critical Euler load. 

For a suspended homogeneous elastic cable with small sag-to-span ratios (Benedet­
tini et al. [7]), 

[ 
u" + .l)..2./,,, rl u'./,1ds 1 1 64 <f/ JO 1 <f/ 

.eu = --
p 0 

u~ f~ u~ 'ljJ' d.s + ~1j/' fol (u~2 + u~2) ds } 

u~ f~ u~'ljJ'ds 

u~ fd (u~2 + u;2) ds } 

u~ (u~2 + u~2) ds 

F(s t _ { Pl(S)COS0,t } 
, ) - P2(S) cos(0,t + T) 

(4) 

(5) 

(6) 

(7) 

where p is a nondimensional inertia term, K = Ej(mgR) is a nondimensional pa­
rameter depending on the Young modulus E, the volume mass density m, and the 
span £; b is the sag-to-span ratio; )..2 = 512Kb3 is the square of the elasto-geometric 
parameter [8]; 'ljJ = 4bs(1 - s) is the initial parabolic shape; and u T = {Ul' U2} 
denotes the vector of in-plane (vertical) and out-of-plane (horizontal) displacement 
components. 
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3. Direct Approach, Full-basis, and Finite Galerkin Discretizations 

Direct application of the method of multiple scales [9,10] to Eq. (1) and associ­
ated boundary conditions produces a second-order approximation of the response of 
the system to a primary resonance of the non-internally resonant nth mode in the 
form 

u(s,t) = ancos(Ot -,n)¢n(S) 

+~a;, [ cos 2 (Ot - In) "pln(S) + "p2n(S)] + ... (8) 

where the "pjn are solutions of the boundary-value problems 

(9) 

with the pertinent boundary conditions. The amplitude an and the frequency de­
tuning a are related by the following frequency-response equation: 

(10) 

where in is the nth modal projection of the force and the effective nonlinearity 
coefficient is given by 

Performing a full-basis Galerkin discretization of Eq. (1) and the pertinent bound­
ary conditions by using the complete set of eigenfunctions ¢n and subsequently 
applying the method of multiple scales to the resulting infinite set of ordinary­
differential equations yields (Lacarbonara [3]) the same approximate solution as that 
obtained with the direct approach; that is, Eqs. (8) and (10)-(12). The remarkable 
formal difference is that the second-order shape functions and the softening term 
in the effective nonlinearity coefficient are modal realizations of their counterparts 
obtained with the direct approach. For planar vibrations of fixed-fixed buckled 
beams and suspended cables (they are governed by the same quadratic operators), 
the series for the softening term becomes 

00 

stool = ~ Ilk 
nn L ' (13) 

k=l 

where 
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Ilk = fo1 i{J'¢~ds and hk = f~ ¢~¢~ds, with i{J = ?/J/b. 

For suspended cables, Ih is multiplied by 8Kb/ p. We note that, for primary res­
onances of a symmetric mode, Ih is zero for k corresponding to antisymmetric 
eigenmodes. 

Finite-dof models can be extracted from the x-dimensional model by retaining 
a finite number of modes. The effects of the quadratic Ilonlinearities are twofold. 
First, they make the spatial variation ?/Jjn depend on all of the modes. Second, 
they modify the effective nonlinearity coefficient through ?/Jjn' The latter coefficient 
consists of two terms: the term 3innnn/8wn, generated by the cubic nonlinearity, 
and the term S~~) /8wn (S~~) /8wn), calculated with the direct procedure (M -dof 
model), generated by the quadratic nonlinearities. The first term is responsible 
for a hardening behavior and, to this order of approximation, does not depend on 
the method employed. The second term is responsible for a softening behavior; 
it depends on the order (i.e., number of discretizing modes) of the discretization 
procedure. 

The key issue related to the order reduction is convergence. Because the am­
plitude and phase of the response depend quantitatively but, most importantly, 
qualitatively on the effective nonlinearity coefficient, we focus on the convergence 
of this coefficient rather than on that of the displacement field. Convergence of the 
series (13) should guarantee convergence of the function series0j n' 

3.1 PRIMARY RESONANCE OF A FIXED-FIXED BUCKLED BEAM 

In this section, the convergence results conducted on the effective nonlinearity coeffi­
cient of the first mode of a fixed-fixed first-mode buckled beam are summarized. The 
critical Euler buckling load is Pc = 47T2 and the corresponding buckling mode shape 
is?/J = (l/2)b(1 - cos 27TS), with b denoting the buckling level nondimensionalized 
with respect to the radius of gyration of the cross-section of the beam. We note that 
(Lacarbonara et al. [4]) 7/;(s) is the exact solution for the nonlinear post-buckling 
shape. In this case, n = 1; hence, for even k, fh = O. The coefficient all was 
computed with the direct approach, using Eq. (II), and with the low-order models 
with M = 1,2,3,4, where M indicates the number of the retained lowest symmetric 
modes. We show the results of these computations in Fig. l(a). For low buckling 
levels b, the results of the low-order models, including the one-mode model, are in 
good quantitative agreement with the results obtained with the direct approach. 
However, as the buckling level increases, quantitative and even qualitative differ­
ences occur. The effective nonlinearity coefficient obtained with the direct approach 
is positive for all b of interest (i.e., the first mode is always softening), whereas, 
when computed with the one- and two-mode models, the coefficient hecomes nega­
tive ahove a threshold value be (close but below the second crossover level). On the 
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Figure 1. Variation of (a) the effective nonlinearity coefficient air), (b) sir'J, (c) rh, (d) 
hk> and (e) hk. 

other hand, the three-mode and four-mode models predict a softening behavior for 
all b of interest in qualitative agreement with the direct model. 

To investigate the convergence properties of the effective nonlinearity coefficient, 
we study convergence of the series given by Eqs. (13)_ In Fig. l(b), we show the 

sum of the series sir) and the partial sums of order one, two, three, and four. The 

softening term si';"') , except for a minimum around b = 6, increases monotonically 
with increasing b. In contrast, the partial sums of order one and two increase until 
they attain a maximum. Above this maximum, they decrease with increasing b_ 
Therefore, comparing Fig. l(a) with Fig. l(b), we observe that the breakdown of 
the one-mode and two-mode models, above be, is due to the underestimation of the 
softening effects. 
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Figure 2. Variation with the control parameter of the lowest four symmetric frequencies 

and mode shapes of fixed-fixed buckled beams. 

In Fig. l(c), we show variation of each individual TIk term with b. As expected, 
except for high values of b, the effect of the first mode is bigger than those of the 
higher modes. However, above a certain buckling level (b ~ 13), the effect of the 
first mode decreases monotonically with increasing b, and, for high values of b, it is 
lower than the effect of the fifth mode. In addition, the effect of the latter increases 
monotonically with b, and, except for two small intervals of b, it is higher than the 
effect of the third mode. 

In Figs. l(d) and l(e), we show variation of the integrals Ilk and 12k . In Fig. l(d) 
we note that It l is positive and decreases monotonically with increasing b, whereas 
h3 and 115 experience jumps from negative to positive values at b ~ 9.82 and 
b ~ 24.02, respectively. At these buckling levels, the third and fifth modes undergo 
snap-through-type bifurcations. Similarly, 123 and h5 experience jumps at the same 
b-values due to the above-mentioned bifurcations. The symmetric eigenmodes de­
pend on the first-order component of the dynamic stretching force which, in turn, 
depends on the applied end-load. Increasing the buckling level (i.e., the end-load), 
these modes can undergo crossover and, for higher loads, snap-through-type bifur­
cations which entail major modifications of the structure of the associated shapes 
as it is shown in Fig. 2. 

Ohserving the evolution of these mode shapes, above tHe first crossover, we are 
now able to interpret the behavior of Itk and hk. For example, for the first mode, the 
presence of a hump in the midspan is responsible for the increased overall curvature 
of the mode shape, i.e. hI (Fig. l(e)); in addition, the resulting deviation between 
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Figure 3. Variation of (a) the effective nonlinearity coefficient aitf), (b) SWl, (c) IIk, (d) 

Ilk, and (e) hk when K = 588.581. 

the first mode shape and the post-buckling deflection of the beam is responsible 
for decreasing 111 (Fig. 1 (d)). These two integrals have antagonist effects in the 
softening term; however, because III < 1 for high b, the product of III and 121 

in Eq. (13) results in the underestimation of the softening effect in the one-mode 
model. At the same time, the evolution of the second and third symmetric mode 
shapes for high buckling levels seems to be responsible for the increasingly important 
contributions to the softening effects from the latter modes. 

The implications of these multi-mode behaviors for high b on the underlying 
nonlinear dynamics of the system are such that a more complex spatial content is 
present in the dynamic deflections (i.e., 'spatial overtones'). 
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3.2 PRIMARY RESONANCE OF A SUSPENDED CABLE 

In this section, the results obtained for the effective nonlinearity coefficient of the 
first in-plane (vertical) mode of a suspended cable are summarized. 

In Figs. 3( a) and 3(b), we show variation of the effective nonlinearity coefficient 
and of the softening term, respectively, with A, as calculated with the direct approach 
and the one-, two-, three-, and four-dof models. The effective nonlinearity coefficient 
of the first mode is predicted to be of the hardening type for very low values of A 
by all of the models (when A approaches zero the cable tends to a string). As 
A is increased, it becomes softening. As A increases above A ~ 3.51T, there is a 
further switch from softening to hardening behavior. In the range of high values of 
A, the one- and two-mode models predict a hardening behavior, whereas the direct 
approach as well as the three- and higher-dof models predict a softening behavior. 
However, for higher values of .\, also the three- and four-dof models breakdown. 
It should be mentioned that for typical values of K (common technical cables), 
this range of A corresponds to high sag-to-span ratios (i.e., slack cables) where the 
assumptions on the initial parabolic profile may become questionable. This does not 
occur for the experimental cable considered here (Rega et al. [11]). For this cable, 
characterized by a high value of K, typical values of b of a parabolic profile (up to 
one-eight) correspond to the overall considered range of A. 

We note that the discontinuous portions of Figs. 3 (a) and 3(b) correspond to 
divergent solutions and are located in the neighborhoods of 2:1 internal resonances 
involving the first and second symmetric modes and the first and third symmetric 
modes. In these regions, the softening term (Fig. 3(b)) and the effective nonlinearity 
coefficient (Fig. 3( a)) calculated with the direct approach (or two- and higher-dof 
models) attain arbitrarily large values. This is due to the vanishing denominator 
(W] - 4wn associated with the particular solution of the higher-frequency mode 
involved in the 2:1 internal resonance with the first mode. More specifically, the 
strongly divergent behavior for A ~ 5.51T is due to the largely detuned 2:1 internal 
resonance between the first and third symmetric planar modes. Evidently, the non­
internally resonant expansion does not hold any more in these ranges. However, it 
is worth remarking that the breakdown of the expansion is naturally highlighted by 
the accomplished direct procedure. 

Again, a close look at Figs. 3(b) and 3( c) leads to the conclusion that for high 
values of A, the one- and two-dof models underestimate the softening effects of the 
quadratic nonlinearities. In Fig. 3( c) we note that (i) III attains a maximum between 
the first and second crossovers and then decreases with increasing A; (ii) the term 
corresponding to the second symmetric mode is relatively small in the whole range 
of interest; and (iii) more interestingly, the terms corresponding to the third and 
fourth symmetric modes are higher than that corresponding to the first mode for 
high A. 

In Figs. 3( d) and 3( e), we show variation of the integrals Ilk and hk. We note 
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Figure 4. Variation with the control parameter of the lowest four symmetric frequencies 
and mode shapes of suspended cables. 

that III is positive and decreases monotonically with increasing A, as in buckled 
beams, and 121 has also a comparable behavior. On the other hand, I l3 , 115 , and 
117 are characterized by maxima attained at the crossover points of the associated 
modes (second, third, and fourth crossovers in Fig. 4). Again, observation of the 
evolution of the mode shapes, above the first crossover, allows us to interpret the 
behavior of hk and 12k . Moreover, combination of the latter in Eq. (13) expounds 
their difIerent contributions to the softening effects. 

4. Conclusions 

Convergence of Galerkin-discretized models for primary resonances of the first 
planar non-internally resonant mode of a fixed-fixed first-mode buckled beam and a 
suspended cable has been investigated. The used control parameter is the nondimen­
sional buckling level for the buckled beam and the elasto-geometric parameter A for 
the suspended cable. The limit sums of the investigated-series4Iave been obtained 
with direct application of the method of multiple scales to the relevant equations of 
motion. The governing equations of the two structural systems have the same geo­
metric nonlinear operators, but have different linear stiffness operators. In addition, 
the initial normalized nonlinear shapes of both systems do not vary with the control 
parameter. Therefore, the difference between the dynamics of the beam and cable 
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is the result of the variation of the eigenvalue problem with the control parameter. 
By applying the method of multiple scales directly to the equations of motion, 

it is shown that one-dof models breakdown in some ranges of the control param­
eter (above the first crossover) due to underestimation of the softening effects. In 
these ranges, three- or higher-dof models are the minimum reduced-order models 
that can capture, at least qualitatively, the correct symmetric planar non-internally 
resonant dynamics of the original systems. The first-order dynamic stretching force 
is responsible for crossover bifurcations. In the case of buckled beams, it is likely 
to be responsible also for snap-through-type bifurcations of the symmetric modes. 
Both bifurcations entail major modifications of the associated mode shapes. Specif­
ically, the variation of the shape of the first mode has two antagonist effects: (i) the 
increased overall curvature of the shape tends to emphasize the softening behavior; 
(ii) the deviation of the mode shape with respect to the initial nonlinear shape (i.e., 
presence of regions of opposite curvature) has a detrimental effect on the soften­
ing behavior. In both systems, this latter effect prevails and is responsible for the 
breakdown of one-dof model. 

We conclude that a heuristic or qualitative criterion for predicting the breakdown 
of low-order models may be based on comparison of the mode shape of the excited 
mode with the initial nonlinear shape. When major deviations occur, low-order 
models are likely to fail. 
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In IR2n, consider a system of equations of the form 

dx 
- = Ax + cX(x), 
dt 

(0.1) 

where A is a constant matrix, X E lK[x], lK[x] is the polynomial ring over IR,x E r2n , 

and c is a small positive parameter. Assume that, for c = 0, a general solution of system 
(0.1) is quasiperiodic with frequency basis W = (Wl, ... ,Wm ), where m:S n. Under these 
assumptions, system (0.1) reduces to the form 

dx 
dt = )"Hx + cX(x), (0.2) 

where 

(0.3) 

E is the two-dimensional identity matrix,)..v > O,X = (xL ... ,x~), x~ E IR2 ,v = 1.n. 
We can apply to system (0.2) the general method of asymptotic integration of nonlinear 

systems given in [1, 2], as well as the Bogolyubov theory of quasiperiodic solutions [3]. 

1. Asymptotic Method 

Consider the system of equations (0.2). For c = 0, its fundamental matrix of solutions 
e>.Ht determines the m-parameter family of limit matrices as It I -> 00. The form of this 
family of matrices depends on the choice of the frequency basis w. In the nonresonance case, 
we have ).. = wand the limit family is determined by the matrix 

<I>(cp) = eH<p = diag {sincplHl + cosCP1E, ... , sincpnHn + cosCPnE}. 

In the resonance case, we assume that 

).. = Kw, (1.1) 

where K is an integer-valued n x m matrix of rank m. 
The limit family as It I -> 00 is now determined by the matrix <I>(KW) , where 

W = (Wl,"" wm) E Jm. 
247 
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According to [2], we seek the asymptotic expansion of a solution x = x(t, e) of system 
(0.2) in the form of the series 

x = Y + CUl(Y) + ... + EPUp(Y) + ... , (1.2) 

where Y = yi, ... , Y;::), y~ E JR2, Y = y( t, E) is a solution of the averaged equation 

dy 
dt =)..H Y + d'i (y) + ... + ePYp (y) + ... , (1.3) 

u v , v = 1,2 ... , is a solution of the homological equation 

.cuv = Xv(Y) - Yv(Y), v = 1,2, ... , 

under the condition 

Suv(y) = 0, v = 1,2, .... 

Here, 

8 
.c = 8y)"Hy -)"H 

is the homological operator of the method, S is the averaging operator of the method, and 

8X(y) 
X 2(y) = ayU1(y), ... , 

Xv(y) = :!::v [eX(Y+Eu1(Y)+···+Ev-1uv_l(Y))] 110=0, (1.4) 

Yv(Y) =' SXv(Y), l/ = 1,2, .... 

In view ofthe expressions for the limit values ofthe matrix eAHt as It I --+ 00, we transform 
the formulas [1] for Sand £-1 to the form 

2" 2" 

SX(y) = (2:)m I·· J <1>( -Kw)X(<1>(Kw)y)dwl ... dwm, 
o 0 

.c-1[X] = L X~(y), 
kicO (k,w) 

2" 2" 

(1.5) 

X~(y) = - (2:)m I·· J <1>( -Kw)X(<1>(Kw)y)sin(k, W)dWl ... dwm· (1.6) 
o 0 

Relations (1.2)-(1.6) determine the asymptotic method of integration of system (0.2). The 
system in which 
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is an important case of system (0.2). For this case, for e = 1, the asymptotic method 
gives an expansion of the normal form [5] regularized by powers of e for the system under 
consideration and the same expansion for the transformation leading to the normal form. 

2. Splitting of the Averaged System of Equations 

According to [2], the functions Yv belong to the kernel of the operator C and, therefore, 
satisfy the relation 

Yv(eAHty) = eAHtyv(y), II = 1,2, .... (2.1) 

In the limit as It I --+ 00, relation (2.1) turns into the equality 

Yv (1)(KIl1)y) = 1>(KIl1)Yv (Y), II = 1,2, ... , (2.2) 

which is valid for all III E Jm and y E 1R2n. 
Equality (2.2) allows one to split the averaged system of equations (1.3) by separating 

the system of equations with slow·'variables form it. For this purpose, instead of y, we 
introduce in (1.3) polar coordinates (cp, h) E In x lR+n according to formulas 

y = eH<p Bh, (2.3) 

where B is a 2n x n matrix defined by the following conditions 

B+HB = 0, B+B = E, 

B+ is the matrix pseudoinverse to B, and 0 and E are the zero and identity matrices of the 
corresponding dimension. 

In the variab~s be, cp, equation (1.3) takes the form 

dh = '\" EV B+e-H<py; (eH<P Bh) 
dt L..J v , 

v~l 

~~ =). - Lev B+ He-H<PYv(eH<p Bh)/h, 
v~l 

where the sign / denotes the componentwise division of a vector. 
In the nonresonance case, according to (2.2), we have 

e-H<PYv(eH<p Bh) = Yv(Bh), z) = 1,2, ... , 

and system (2.4) takes the form of the split system of equations 

dh = ""' c:V B+Y; (Bh) dt L..- v , 
v~ 

~~ =). - L c:V B+ HYv(Bh)/h. 
v~l 

(2.4) 

In the case of resonance, one should continue the transformation of system (2.4) by using 
equality (1.1). For this purpose, we choose an integer-valued n x (n - m) matrix Q of rank 
n - m from the condition of its orthogonality to the matrix K, i.e., 
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KTQ=O, 

where KT is the transposed matrix. This can easily be done if, as Q, we take the matrix 
consisting of n - m linearly independent columns of the matrix 

(2.5) 

where K+ is the matrix pseudoinverse to K and d1 is the least integer number that guarantees 
that matrix (2.5) is integer-valued. 

We now change the variables by introducing the variables W, () instead of r.p in (2.4) 
according to the formulas 

r.p = Kw + Q(), w = K+r.p, () = Q+r.p, 

where Q+ is the matrix pseudoinverse to Q. 
In the variables h, (), W, system (2.4) takes the form of the split system 

~~ = Lev B+<I>( -Q())Yv(<I>(Q())Bh), 
v~l 

~~ = L cVQ+ B+ H<I>( -Q())Yv(<I>(Q())Bh)/h, 
v~l 

~~ = W - LeV K+ B+ H<I>( -Q())Yv(<I>(Q())Bh)/h. 
v~l 

(2.6) 

It follows from (2.6) that under the change of variables (2.3) the hyperplanes Yv = ° 
generate the poles hv = 0 of system (2.6). Therefore, in the investigation of the trajectories 
of the averaged system of equations (1.3) starting from the hyperplanes Yv = 0, one should 
introduce polar coordinates only for y that do not belong to the indicated hyperplanes. 

3. Analysis of Averaged Equati<:ms in the Nonresonace Case 

In the nonresonance case, it is convenient to write the averaged equations (1.3) in the 
form of the following system with respect to two-dimensional parameters yj = (Y2j-l,Y2j), 
j = 1,n: 

dyj _ \ H j + ~ vyj( 1 n) ill - /\j jY ~ c v Y , ... , Y , 
"~l 

Equations (2.2) now take the form 

j = 1,n. 

Yj(<I>l (r.pl)yl , ... ,<I>j(r.pj)yj, ... ,<I>n(r.pn)yn) 

= <I>j(r.pj)Y!(yl, ... ,yi, ... ,yn), j=r;n, 
and determine the character of symmetry of the right-hand sides of system (3.1). 

By setting r.pj = 7r and r.pv = 0 for v =1= j in (3.2), we get 

Y j( 1 _ j n) _ _ yj( 1 j n) "y, ... , y, ... ,y - "y, ... ,y, ... ,y 

for all v = 1,2, ... and arbitrary j = 1, n. 

(3.1) 

(3.2) 

(3.3) 
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By setting 'PI = 7r and 'Pv = 0 for I i- j and v i- I in (3.2), we obtain 

Y j( I _ I n) _ yj( I I n) v y, ... , y, ... y - v y, ... ,y, ... ,y (3.4) 

for all v = 1,2, . .. and arbitrary 1 ::; I ::; n, I i- j, j = !,n. 
According to (3.3) and (3.4), the functions Yj (yl , ... , yn) are odd with respect to the 

variable yj and even with i:espect to the other variables yl for I i- j, 1 ::; j ::; n. 
Differentiating (3.2) with respect to 'Pj and setting 'PI = 'P2 = ... 'Pn = 0, we get 

_Hl)Yj(Y)H.yj = yj(y) . -1- 1 2 
J oyj J v' J = , n, v = , , .... (3.5) 

According to (3.5), the averaged equations (3.1) have the form 

(3.6) 

Consequently, the hyperplanes 

yj = 0, j = r,n, 
and their intersections are invariant for the averaged equations. 

The polar coordinates hj, Wj are introduced instead of yj according to the formulas 

yj = (sin'PjHj + cos'PjE)Bjhj , j = 1,n, 

and transform equations (3.6) to the form 

dh j = _ ""' vB+H.8Yj(Bh) H.Bh 
dt ~ E J J oyj J J J' 

v~1 

j = 1,n. 

Equalities (3.3)-(3.5) guarantee that the functions 

oYJ(Bh)H_B. -
oyj J J' j=l,n, v=1,2, ... , 

(3.7) 

are even with respect to any of the variables hI' ... ' hn . Then, taking into account that 
Yj (Bh) belongs to the polynomial ring JK[h] for j = r,n, v = 1,2, ... , we get 

oYj(Bh) . _ j 2 2 
o' HJBJ-Rv(hl,···,hn) yJ 

for j = 1, n, v = 1,2, ... ; here, Rt(rl, ... , rn) belongs to JK[r]. 
In the variables 

rj=h;, j=r,n, 

the system of equations (3.7) takes the form 
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j = 1,n, 

or, in obvious notation, 

~: = r L c" F,,(r) , 
,,;:0:1 

~~ = A + L c"G,,(r), j = I;n. 
,,;:0:1 

As follows from equations (3.7), their right-hand sides are also defined on the boundary 
of the domain JR+n, i.e., system (3.7) can be used for the investigation of trajectories in the 
entire subspace 

h" 2: 0, v = 1, n. (3.8) 

Moreover, the reasoning concerning the investigation of system (3.7) in domain (3.8) 
can be justified. Below, in particular, we present a result that generalizes [3]. To formulate 
it , we write the amplitude equations of the first approximation of system (3.7) in the form 

dh 
dt = cF(h). 

Let 

h = ho 2: 0 : F(ho) = 0 

be an equilibrium point of system (3.9) and let 

H = of(ho) 
oh 

(3.9) 

(3.10) 

(3.11) 

be the coefficient matrix of the variational equations of system (3.9) corresponding to the 
equilibrium point (3.10). 

Let 

""' Xk(y) 
U1(Y) = L (k A) 

k#O ' 

be the function from the asymptotic expansion (1.2) of solutions of system (0.2). 

Theorem 1. Assume that the right-hand side of system (0.2) is such that 

(i) for certain integer 2 :S s :S I, the function X(x) is I times continuously differentiable 
in the domain D <:;; JR2n and U1 (x) is s times continuously differentiable in D; 

(ii) equation (3.9) has an equilibrium point (3.10) such that the torus 

x = eH<p B+ho 

belongs to the domain D and the eigenvalues of matrix (3.11) do not have zero real 
parts. 

Then one can find co > 0 such that, for all 0 :S c :S co, the system of equations (0.2) 
has an (m - p)-dimensional invariant torus 
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x = f(iJI,E), 

where p is the number of zero coordinates of the vector ho, f E Clip2 (.Jm-p), iJI = ('Ph"'" 'Pjn-v)' 
and jv, v = 1, n - p, are the indices of nonzero coordinates of the vector ho. 

This torus satisfies the condition 

lim Ilf(iJI,E) - eH 'Pholl s _ 2 = 0 
,,~o 

and is exponentially stable if the real parts of the eigenvalues of the matrix H are negative, 
exponentially unstable if they are positive, and exponentially dichotomous, otherwise. 

Here, Cli;(.Jm-p) is the space of (s - 2)-differentiable functions on the torus .Jm-p 

whose (s - 2) th derivatives satisfy the Lipschitz condition, 11.llp = maxo~lpl~pIIDP·llo, 

DP = aq,il.~~~:"-/' Ilpll = L~:i Pv, and 11·110 = maxq,EJ~_p 11·11· 

In the case where the numbers). satisfy the condition of "strong incommensurability" 

I(k, ).)1 ~ (1 +~kl)d' k E Zn, k #- 0, 

according to [4], the assumption on Ul is true for any I and s satisfying the inequality 

/- d-?:!: > s. 
2 

Theorem 1 can be extended to the case of analytic right-hand sides of system (0.1). In 

this case, it takes the form of the corresponding statcmcnt from[5]. 

4. Specific Features of the resonance Case 

We say that system (0.2) is a resonance system if the frequency basis w has the number 

of frequencies less than n. The basic relation for the characterization of the resonance case 

is relation (l.1), which connects the frequencies ). of own oscillations of the unperturbed 

system of equations with the frequency basis w. 

It follows from (l.1) that 

(4.1) 

where K+ is the matrix pscndoinverse to K. Taking relations (1.1) and (4.1) into account, 

we say that the matrix K js the determining mairix for the frequency basis. 

Let us clarify the role of the matrix K in the characterization of resonances. 

A vector k E zn, k #- 0, is called a resonance vector if 

(k,).) = O. 

Let Q be the matrix formed by all resonance vectors. Then 

(4.2) 
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Relation (4.2) follows from the equality. 

(k,A) = (k,Kw) = (KTk,w) 

and the fact that the frequencies ware incommensurable 

According to (4.2), we have 

rank Q =n-m 

and the quantity (n - m) can be called the resonance rank of system (0.2). With the use 

of this notion, we can introduce the hierarchy of resonances, regarding that the greater the 

resonance rank, the more complicated the resonance. 

According to (4.2), the averaging operator S for systems (0.2) with matrices K and Kl 
of the same rank, which determine the frequency basis of system (0.2), is the same if 

KerKT = KerKf, 

This is possible only if 

Kl = KR, R = K+ K, detR =1= O. (4.3) 

Thus, the passage from one frequency basis to another in system (0.2) does not change 

the averaging operator, as well as it does not change under the passage form A to AI, whenever 

the matrices K and Kl determining the frequency bases of A and Al satisfy relations (4.3). 

Denote by Ql the subset of Q defined by the condition 

n 

Ikl = L Ik.,1 ::; l. 
.,=1 

Let X(x) be a polynomial of degree N. Then ~(-cp)X(~(cp)x) is a trigonometric polynomial 

with respect to cp, which contains the harmonics ei(k,<p) with Ikl ::; N + 1. Therefore, the 

functions 

~(-cp)X(~(cp)y) = L Xk(x)ei(k,<p) 
kEZn 

satisfy the condition 

and the series Yl (y), which determines the averaged value of the function X (x), is truncated 

to the sum 

Y1(y) = Xo(Y) + L Xk(Y)' 
kEQN+l 
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Considering finite approximations of the asymptotic method of integration of system 

(0.2) for different>., we must compare the sets Ql for such l. In particular, if the matrix K 

is such that 

(4.4) 

then, in the first approximation, we have 

In this case, the equations of the first approximation for resonance coincide with equations 

of the first approximation in the nonresonance case. In this case, we split the averaged 

equations of the first approximation by introducing the amplitude-phase coordinates h, <.p. 

Furthermore, the correspondence between the equilibrium points of the amplitude equations 

and invariant tori of system (0.2) described in Theorem 1 is preserved. 

If condition (4.4) is not satisfied, we split the averaged equations according to the general 

scheme of the method. By using the general theory of perturbation of invariant tori, we can 

easily establish the correspondence between "rough" quasistatic equilibrium points 

h = ho, e = eo, ho > 0, 

of the split equations of the first approximation and m - dimensional invariant tori of the 

original system of equations (0.2) for resonance (1.1). 

Among systems considered, there exist systems that split in the course of passing from 

the Euclidean to polar coordinates. The asymptotic integration of such system is significantly 

simplified immediately on passing to the polar coordinates. 

Let us give an example of such a system. For this purpose, consider the following system 

of equations with cubic nonlinearity: 

dxv [( dt = Av + cgv(x))Hv + cQv + .Bv(S"x",x,,)E] x,,, v= 1,n, (4.5) 

where g" is polynomial of the second degree in x, 

Sv, v = r,n are symmetric matrices satisfying the conditions 

and Q v and .Bv are constant parameters. The introduction of the polar coordinates 

splits system (4.5) and reduces it to the form 
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dr 
dt = 2ErF(a. + (3sr), 

d<p 
dt = A + Eg(if>(<p)Bh). (4.6) 

Here, the multiplication of vectors is understood in the coodinatewise sense, 

If the parameters a. and (3 are chosen so that 

a.(3s < 0, 

then the amplitude equation (4.6) has the following equilibrium points in the region r ;::: 0: 

ero = -ea./ (3s, 

where e is a vector whose coordinates may be equal only to 0 or 1. This implies that the 

original system of equations (4.5) has C~ p-dimensional tori of the form 

for any 1 :::; p < n. Consequently, the system has at least 2n invariant tori (including the 

point x = 0). 
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NONLINEAR OSCILLATIONS OF VEHICLES IN CONVOY 

WERNER SCHIEHLEN and AXEL FRITZ 
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Pfaffenwaldring 9 
70550 Stuttgart, Germany 

1. Introduction 

Highway automation requires intelligent vehicle control in longitudinal direction. In this 
paper linear and nonlinear controllers are presented for a dual task: that each vehicle in a 
convoy operates in a stable fashion, and that the platoon is string stable in longitudinal 
direction. For this analysis a convoy of five passenger cars is used. 

The paper is organized as follows: In section 2 vehicle and actuator models describ­
ing the longitudinal dynamics are introduced for simulation and for controller design, 
respectively. In section 3 the formulated control objectives are verified for the different 
controllers, depending on whether communication between the vehicles is available or not. 
Fir ally, in section 4 simulation results are discussed. 

2. Vehicle Models 

The modeling of the longitudinal dynamics of vehicles is discussed in detail in Mitschke [1] 
and Popp/Schiehlen [2]. The overall motion shows oscillations with respect to the nominal 
motion due to transitions of the traveling speed. 

2.1. SIMULATION MODEL 

The simulation model for the longitudinal dynamics is based OIl- the method of multibody 
systems [3]. In the following the index i indicates the state of th~ i-th vehicle in the convoy, 
i = 1(1)5. The model of one car consists of the car body, four wheels, a differential and a 
shift gear, see Figure 1. The generalized coordinates are the longitudinal displacement Xi 

of the car body, the angular displacements of the four wheels, ¢fli, ¢fri, ¢rli and ¢rri, and 
the rotations at the differential and shift gear, ¢dli, ¢dri and ¢gi. The applied forces are the 
longitudinal tire forces ftf/, ftfT> ftrl and ftrr which will be calculated from Pacejka's tire 
formula, the gravity forces and the nonlinear forces resulting from air, rolling and climbing 
drag, it, fr and fe· The power train consists of two drive shafts with the stiffness Cd, a 
differential gear, a cardan shaft with the stiffness Ce and a shift gear. The engine torque 
tei depends nonlinearly on the engine speed and the throttle angle athi, respectively. The 
combustion process in the engine is regarded as a first order system with a time constant 

257 
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T1 . Braking is also implemented. The braking torque tbi is a function of the hydraulic 
pressure Pbi. 

Figure 1. Simulation model of vehicle i 

As a result one gets a set of strongly nonlinear equations of motion for the longitudinal 
dynamics of vehicle i which can be written in state space form as 

(1) 

2.2. ACTUATOR MODEL 

The simulation model of each of the following cars in the convoy is extended by a nonlinear 
model of a controlled servo-motor used as an actuator transferring the throttle position 
claimed by the adaptive cruise controller. The eigendynamics ofthe actuator is represented 
by a cascade control loop shown in Figure 2. 

Ua; tr 
~ 

Figure 2. Actuator model of vehicle i 

The controller characteristic converts the control error b.athi given as the difference 
between the desired throttle angle athides and the actual throttle angle athi into the input 
voltage Uei of the servo motor. The servo-motor drives the Bowden wire with the velocity 
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Si resulting in a first order delay PT1. Then, the angular velocity of the throttle nthi follows 
from the kinematics of the throttle operating rod 

. k*(k* 3 k* 2 k* + k*) . C<thi = 4 3C<thi + 2C<thi + 1 C<thi 0 si (2) 

where ki,i = 0(1)3 is found from the throttle operating rod characteristic. The nonlinear 
function k: is determined by measurements. Finally, the angular velocity of the throttle 
is integrated to get C<thi. 

2.3. DESIGN MODEL 

Since the vehicle model is too complex to be used for controller design the model is 
partially linearized. The engine torque tei is considered as a linear function of engine 
speed and throttle position. Neglecting the slip and the elasticity of the power train, the 
engine speed is proportional to the vehicle speed Xi. Then, the engine torque reads as 

(3) 

where M i , i = 0(1)2 are constants. 
Since the delay of the actuator dynamics is comparable to the dynamics of the com­

bustion process the actuator has to be included in the controller design. However, the 
actuator controller and the throttle operating rod characteristic (2) are approximated by 
a tanh-function resulting in 

(4) 

wh2re ki' i = 1(1)4 is found by identification. 
With all these simplifications the equations of motion for the design model read as 

1 0 0 0 Xi Vi 

0 r2M+J 0 0 Vi r KMtexi - tbi - r2(fr + fz + Ie) 

0 0 Tl 0 iexi Mo + Ml Vi + M 2C<thi - texi 
(5) 

0 0 0 1 Qthi kl tanh [k2 (C<thides - C<thi + k3) 1 + k4 
~ .. 

Xi !(X"Ui) 

In these equations M denotes the mass of the car body and the four wheels, J is the 
moment of inertia of the power train reduced to the rear wheels, r is the wheel radius 
and KM is a coefficient characterizing the power train transmission. The state vector Xi 

contains the displacement Xi, the velocity Vi, the delayed engine torque texi and the throttle 
angle C<thi while the input vector Ui consists of the desired throttle angle C<thides and the 
braking torque tbi. 

3. Adaptive Cruise Control 

In this section, first the measured quantities and control objectives are formulated. Then, 
a linear and a nonlinear controller design is discussed regarding the control objectives. 
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3.1. CONTROL LOOP PROPERTIES 

The following measured quantities are available: the on board sensors measure the velocity 
Vi, the acceleration ai and the throttle angle Ctthi of each vehicle in the convoy as well as 
the range Ri between two cars dedicated by a laser. The range rate Hi is obtained by 
differentiating and filtering the measured distance data. Data of the leading vehicle like 
acceleration ai-i is supposed to be optional available over communication. 

The control error of the cruise control is the difference between the desired headway 
Rides and the distance Ri calculated by 

(6) 

see Figure 3, where lhi-i is the distance between the center of gravity and the rear bumper 
of the (i - l)-th vehicle and Lvi the distance between the center of gravity and the front 
bumper of the ith vehicle. 

~vehiCle i 

Figure 3. Range between vehicle i-I and i 

The desired headway Rides can be expressed in the form 

(7) 

where do is a constant distance and Th the headway time. This formulation is called 
headway control strategy, see Swaroop et al. [4]. Then, the control error ei reads as 

ei R;des - R; 

= do + ThVi - ((Xi-i -lhi-i) - (Xi + lVi)) . (8) 

The following platoon objectives are supposed for the cruise control of a convoy of 
vehicles, see Eyre et al. [5]. 

- The steady state spacing errors of all vehicles in the platoon should be zero. This 
includes that the closed loop system of each vehicle should be asymptotically stable. 
In the following that is called individual vehicle stability. 

- The phase margin guaranteeing vehicle stability should be as high as possible. 
- The maximum absolute spacing Ri of the i-th vehicle should be less compared to that 

of the (i - 1)-th vehicle. Therefore, the gain of the spacing transfer function Gi(s) 
should be less than one, 

IGi(s)1 = IR~~~~~)I< 1 (9) 

This requirement is called L2 string stability. 
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- String stability without overshoot is given, if equation (9) is true and the impulse 
response of the inverse Laplace transformation of Gi (s) remains positive. In the fol­
lowing the inverse Laplace transformation of Gi (s) is called 9i (t). 

In the next two paragraphs these objectives are verified for a linear and a nonlinear 
controller design considering only acceleration maneuvers. The control design for braking 
can be done analogous. 

3.2. LINEAR CONTROL 

The control loop for the linear controller design consists of a linear P D2 controller and a 
linearized vehicle model, see Figure 4. 

Figure 4. Control loop for linear control 

The around the operating point (VO, G:thiO, uo) linearized state space equations of the 
vehicle model with actuator are 

0 1 0 0 0 

0 -2 ~!vor2 ~ 0 0 
Xi = 

r M+J r M+J 

0 Ml. 1 & Xi+ 
0 

Ui, 

Tl -n Tl 

0 0 0 ~ ~ - cosh (uo) cosh (uo) 
'---v--' v 

bi ("',hiO ,uo) Ai(vo'''''hiO,UO) 

where un = k2(UO - G:thiOk3). The output vector Yi is given by the measurements as 

Yi = [-1 - n 0 0] Xi = c; Xi . 

The input output behavior of the plant can be formulated as 

Gpi(S) = Yi = c;(Is - Ai)-lbi , 
ui 

and the transfer function for the chosen linear P D2-controller is 

() Ui 2 
GCi S = - = P(1 + TdlS + Td2S) . 

ei 

(10) 

(11) 

(12) 

(13) 

Since the relative acceleration between two vehicles is required for the calculation of the 
second derivative of ei, the control parameter Td2 is chosen zero if no communication is 
available. 

3.2.1. Control Objectives of Linear Control 
With ei = Wi - Yi, see Figure 4, and the equations (12) and (13) one gets 

1 
ei(s) = G ()G ()Wi(S) . 1 + Pi S Ci S 

(14) 
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Using the final value theorem for (14) with Wi(S) = wo/s one obtains 

lim ei(t) = lim sei(s) = G (O)G () = 0 . 
t->oo 8->0 1 + Pi 0 Ci 0 

(15) 

Therefore, individual vehicle stability with a zero steady state error is achieved indepen­
dent of the operating point. Depending on the parameters chosen, the degree of stability 
may be small. 

For the following analysis Th = Is and two operating points (vo = 10m/s,gear = 
2, C¥thiO = Uo and Va = 30m/ s, gear = 4, C¥thiO = uo) are assumed. The Figure 5 shows the 
Bode plots of the linear controller for the operating point (vo = 30m/ s, gear = 4, C¥thiO = 
uo). 

without communication (Td2 = as) with communication (Td! = 2s) 

lOO~--------~----------~----

P =-100, Tdl = 0.58 
100r-------------------~--~ 

P =-100, Td2 == 58 

[i) 
"0 
C 0 '(0 . 
Ol 

[i) 
"0 
C 0 
'(0 
Ol 

W Or----------.----------~--~oo 
~ P =-100, Tdl = 0.58 ~ 

~P =-100,Td1 = O.ls ~ 
~loo ~-100 
ID ID 

~ ~ 
~ ~ 

0. 0. . P=-100,Td2 =0.1s 
-200 -200L--------=-~----------'----

10-2 10° 102 10-2 10° 102 

Figure 5. Bode plots of linear controller without (left) and with (right) communication for operating 
point (vo = 30m/s, gear = 4) 

These plots show the individual vehicle stability of each car in the convoy. Further, 
one recognizes that without communication the phase margin becomes greater if Tdl is 
larger. A comparison of both Bode plots shows that the phase margin is clearly higher if 
communication is available. 

Examing string stability, the gain of the transfer function Gi( s) has to be less than 
one. For the linear controller the transfer function is given by 

-Td2S2 - TdlS - 1 
Gi (s) = -C4-s--,4-+--C:::3S:...,3,....+--C-2.::s2~+-C-l-S----l (16) 

with 

(17) 
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where tk, k = 1(1)4 is depending on the elements of Ai. Setting equation (16) in (9) leads 
to 

(Td2Tht4P - t3)2 + 2t4P(Td2 + Td1 Th) - 2t2 > 0, (ISa) 

(it - t4PTh)2 + 2t4P(t2 - tlTdtl > 0, (ISb) 

(t2 - Tdlt4PTh)2 - 2t3tl - 2Pt4(1 - Td2(ntl - t2 - T~t4P) - t3(Th + Tdtl) > O. (lSc) 

Regarding the limit case equal zero, Figure 6 shows the inequalities depending on the 
parameter P, Tdl (without communication) and P, Td2 (with communication Tdl = 2s), 
respectively. 

Td1 Th =1.0,vo=10,gear=2 Th = 1.0, Vo = 30, gear = 4 T h = 1, Vo = 10, gear = 2 

I r-r7"7''7''"O,....,..~c-r-.", 

I I 

-JOO -100 
O~----~--~~ O~----~~~~ 

o -JOO -50 0-100 -50 0 
P P 

Figure 6. String stable areas without (left) and with (right) communication 

The hatched regions mark string instability of the linear controller. It is important to 
mention that if no communication is available the stability area moves with the operating 
point while with communication only the size of the string stable area changes. Therefore, it 
is possible to find a parameter set so that string stability is independent of the linearization 
point, e.g. P = -30 and Td2 = Is. 

Examing string stability without overshoot the impulse responses of gi(t) for the given 
operating points without communication are displayed in Figure 7. 

g;(t) 1 g;(t) Ir------~--~-~----, 

o 
\=1, P=-20, vo=30, gear=4 

-0.5'---~--~--~----'----.J -O.5'---~-"----~--''''-----~----.J ° 2 3 4 5t ° 2 3 4 5t 

Figure 7. Impulse responses of gi(t) without communication 

In the left picture string stable gains are used for the corresponding operation points 
(P = -20 for Va = lOmls,gear = 2 and P = -60 for Va = 30mls, gear=4). Then, the 
convoy is string stable without overshoot. Regarding P = - 20 for Va = 30m Is, gear = 4 
one recognizes that string stability without overshoot is no longer valid, see Figure 7 
right. Therefore, string stability without overshoot depends on the linearization point if 
no communication is available. 
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The Figure 8 shows the same plots if communication is available for P = -30, Tdl = 2s 
and Td2 = Is. It demonstrates that string stability without overshoot is now independent 
of speed and gear. 

0.5 

Th=l, P=-60, vo=30, gear=4 

/ Th=l, P=-30, vo=lO, gear= 0.5 

o L-__ ~ __ ~ ____ ~ __ ~ ____ ~ __ -J 

o 2 3 4 6 t 

Figure 8. Impulse responses of girt) with communication 

To improve the convoy dynamics and to overcome the dependency on the operating 
point or communication, respectively, a nonlinear controller will be now considered. 

3.3. NONLINEAR CONTROL 

In the following a nonlinear control concept is introduced based on the exact state lin­
earization, see Isidori [6]. 

3.3.1. Exact State Linearization and Tracking Control 
An important property of the nonlinear vehicle model given in (5) is its flatness in the 
sense of Fliess [7] su:bject to the output 

Yi = Xi (19) 

Now, consider a transformation like Zl = Yi, Z2 = Yi, ... , Z4 = y;3) which leads to 

(20) 

The function 7r is given in Fritz/Schiehlen [8]. To compensate these nonlinearities a new 
input Wi 

Wi = 7r(z, athides) (21 ) 

is introduced. As a result of the compensation, one obtains a linear system in Brunovsky 
canonical form, see [6]. 

Because the vehicle model with actuator is flat, it is possible to design a linearized 
control law by solving (21) for athides 

athides = 7r*(Z, Wi) (22) 

which yields 
(23) 
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The state transformation from the system given by equations (5) into Brunovsky canonical 
form is also given in FritzjSchiehlen [S]. 

The next step is minimizing the starting control error ei = Yi - Yides and changing 
the output Yi along the suitable desired trajectory. This can be solved by tracking the 
trajectory of the flat output in equation (19) along the desired output Yides which is 
designed on the basis of equation (S) 

Yides = Xi-1 - do - Ihi-1 - IVi - ThVi . 

The differential equation of the tracking error is given by 

(3) (3) 
Yi - Yides 
'-v--' 

(24) 

(25) 

The coefficients £k, k = 0, 1,2 provide stabilization of the control error. By solving (25) for 

y}4) = x;4), it follows from (23) 

(26) 

Using (26) the static feedback law in equation (22) results in 

2 *( 1 [(3) (3)" (k) (k)]) 
Cl:thides = 7r Z'1: Xi - 1 - Xi - ~ £k(Yi - Yides) 

h k=O 

(27) 

In the following appropriate coefficients £1., k = 0,1,2 are chosen to meet the control 
objectives. 

3.3.2. Control Objectives of Nonlinear Control 
The eigenvalues of the error dynamics are assigned with a negative real part by chosing 

for k = 0,1,2 and (2Sa) 

(2Sb) 

This guarantees individual vehicle stability and an asymptotically disappearing control 
error. 

String stability can be examined regarding the spacing transfer function 

If communication is available K is one, else zero. Evaluating equation (9) with (29) leads 
to 

T~£6 - 2(1 - K)£0£2 > 0, 

T~(£i - 2£0£2) - 2£1 + (1 - K)£§ > 0 and 

T~ (£~ - 2£11 + 1 > O. 

(30a) 

(30b) 

(30c) 
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a rea of string 
stability 

Figure g. Areas of string stability without (left) and with (right) communication 

These inequalities are illustrated for Th = Is and various coefficients fo, fl with and 
without communication in Figure 9. The string stable area fulfilling all three inequalities 
is marked by an arrow. Since inequality (30a) disappears in the case of communication, 
string stability is more easily achieved. 

Considering string stability without overshoot the impulse response of the inverse 
Laplace transform of G;(s) has to be regarded. This function is displayed with and with­
out communication in Figure 10 for Th = 1.0, fo = 8.0, f1 = 8.5 and f3 = 4.1. Since 
both trajectories are always positive, string stability without overshoot is independent of 
communication. 

g(t~~0i . II g(t~~HSi t •• . 1 

012345012345 

Figure 10. Impulse response of the inverse Laplace transform of G i without (left) and with (right) 
communication 

4. Simulation Results 

For the following simulations a step disturbance in the throttle position of the leading 
vehicle from athl = 110 to athl = 150 is used. The convoy exists of five vehicles traveling 
for t = Os with a constant velocity of Vo = lOm/ s. The desired range is calculated with 
the constant distance do = 16m and the headway time Th = Is. 

In Figure 11 the oscillations of the headway errors e;, i = 2(1)5 of the linear PD2-

controller with P = -20, Tdl = 0.32s and the nonlinear controller with fo = 8.0, fl = 
8.5 , f2 = 4.1 are compared. Communication is not available. The graphs show that both 
controllers are string stable while the performance of the nonlinear controller is much 
better. 

In the following the value for Vo is changed from lOm/ s to 30m/ s. All other controller 
parameters will not be changed. Since the nonlinear controller is independent of speed 
and gear, string stability is still given. On the other hand the linear controller generates 
larger errors for the following vehicle than for the leader vehicle, see Figure 12. The reason 
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time fs1 

Figure 11. Tracking errors of linear (left) and nonlinear controller (right) without communication, 
Va = lOm/s 

therefore is that the string stable parameters of the linear controller without communica­
tion depend on speed and gear as shown in section 3.2. Using a higher gain, e.g. P = -60 
enables string stability again. 

O~--~---------------------. 

'E0.2 

o 5 10 15 20 25 
time fs1 

Figure 12. Tracking errors of linear controller without communication, Va = 30m/ s 

In the simulations displayed in Figure 13 communication is regarded for Va = 10m/ s. 
For the linear controller the parameter P = -30, Tdl = 2s, Td2 = Is are used while the 
parameters of the nonlinear controller are maintained. 

o 
E 
;-0.2 

-0.4 

o 5 10 IS 20 
time fs1 

25 

-0.4 

o 5 10 IS 20 25 
time fs1 

Figure 13. Tracking errors of linear (left) and nonlinear controller (right) with communication, Vo = lOm/s 

The tracking errors of both controllers are string stable. A comparison of these simula­
tion results with Figure 11 show that the communication improves the dynamical behavior. 

In the last simulation Va is set to 30m/ s. The simulation results in Figure 14 demon­
strate that the string stability of the linear controller is independent of speed and gear if 
communication between the vehicles is used. 
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Or---~----~--~----~--~ 

o 5 10 15 20 25 
time rsl 

Figure 14. Tracking errors of linear controller with communication, Va = 30m/s 

5. Conclusion 

In this paper, a linear and a nonlinear cruise controller are developed for a convoy of 
vehicles. The control objectives are individual vehicle stability and string stability without 
overshoot. 

Due to the linearization of the model the linear controller are to be designed for just one 
operating point given by speed and gear. Nevertheless, the individual vehicle stability of the 
linear controller is independent on speed and gear. On the other hand, the string stability 
depends strongly on speed and gear, if no communication is used. If communication is 
available, string stability is independent of the operating point, too. 

In the case of the nonlinear controller individual vehicle stabiiity and string stability 
without overshoot are guaranteed independent of the operating point. 

A comparison of the both controller schemes shows that in all cases the oscillatory 
performance of the nonlinear controller is better than the one of the linear controller. 
Finally it has to be mentioned that communication improves the dynamical behavior of 
both controllers. 

References 

1. Mitschke, M. Dynamik der Kraftfahrzeuge, Band A, Springer-Verlag, 1982. 
2. Popp, K.; Schiehlen, W. Fahrzeugdynamik, Teubner Verlag, 1983. 
3. Schiehlen, W. Multibody System Dynamics: Roots and Perspectives, Multibody System Dynamics, 

VoLl, No.2, 1997, 149-188. 
4. Swaroop; Hedrick, J. K.; Chien, C. C. Ioannou, P. A Comparison of Spacing and Headway Control 

Laws for Automatically Controlled Vehicles. Vehicle System Dynamics, Vol. 23, (1994), 597-625. 
5. Eyre, J.; Yanakiev, D.; Kanellakopoulos, 1. A Simplified Framework for String Stability Analysis of 

Automated Vehicles. Vehicle System Dynamics, Vol. 30, (1998),375-405. 
6. Isidori, A. Nonlinear Control Systems, Springer-Verlag, 1989. 
7. Fliess, M. et al. On differentially flat nonlinear systems, Nonlinear Control Systems Design, Oxford, 

1992, 408-412. 
8. Fritz, A.; Schiehlen, W. Automatic Cruise Control of a Mechatronically Steered Vehicle Convoy, 

AVEC 98, 1998, 729-734. 



www.manaraa.com

INSTABILITY PHENOMENA OF FOLDABLE STRUCTURES WITH UNI­
LATERAL CONTACT 

M. SCHULZ 
Robert Bosch GmbH, Corporate Research and Development, FV/SLT2, 
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1. Introduction 

In [1] a new antenna design has been proposed. A physical antenna model revealed, un­
expectedly, that contacts develop between panels of adjacent wings of the reflector 
during deployment. Due to the contacts, additional constraints are imposed on the mo­
tion, reducing the mobility to zero and thus, requiring some deformation for deploy­
ment. This paper adresses foldable structures of this kind. They can be modelled in 
terms of a multi body system, the mobility of which is reduced to zero due to the occur­
rence of unilateral contact. 

Introducing generalized coordinates cp and a control parameter p we can simulate 
a quasi-static deployment or retraction by determining the static equilibrium cp* of the 
system for varying values of the control parameter p. In the literature, this procedure is 
referred to as tracing the equilibrium path of a system. For the satellite antenna, the 
driven hinge angle serves as control parameter. 

The paper is laid out as follows. Section 2 presents the first order equilibrium 
equations of a multi body system with unilateral constraints. The equilibrium path can be 
traced, for example, by integrating these equations. Instability phenomena are discussed. 
In section 3, the equilibrium path of the satellite antenna is computed. The antenna 
serves as an example system with a corner limit point, a kind of limit point where the 
equilibrium path is non-smooth. Section 4 describes the effect of unilateral contact and 
related instability phenomena on the dynamical behaviour of the antenna. 

2. Equilibrium Paths of Unilaterally Constrained Multibody Systems 

We consider a conservative multi body system that is described by a set of n generalized 
position coordinates 

and take into account m unilateral, frictionless contacts 
269 

(1) 
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g/qJ)::::O, JEI ,I={1,2, ... ,m}. (2) 

The functions g} may denote distances between two parts of the multibody system. The 
set of generalized coordinates qJ is assumed to be a minimal set of coordinates when all 

unilateral contacts are inactive, i.e. g, > 0 Vj E I. The potential energy U of the system 

is assumed to be a function of the generalized coordinates and a single control parame­
ter p. We require that the constraint functions as well as the energy function are C2_ 

continuous. With the Lagrangian function 

L(qJ,p)=U- LAjgj (3) 
JEI 

the equations of equilibrium are the well-known Kuhn-Tucker conditions which read 

(4 a) 

(4 b) 

when evaluated at a point of equilibrium qJ', X, p. Here, we assume that the gradient 

vectors V g ~ of all active constraints j E J' are linearly independent (regularity as­

sumption) where 

(5) 

Excluding bifurcational behaviour for the moment, we can express the equilib­
rium path with the aid of a parameter s: 

qJ' =qJ'(s) , X =X(s) ,p=p(s). (6) 

The equilibrium path in the qrp-space is in general non-smooth, but exhibits kinks 
where unilateral constraints become active or inactive. Whereas for systems with bilat­
eral constraints the equilibrium path would be smooth and the path derivatives would be 
continuous, for unilateral constraints we are only allowed to presuppose the existence of 
left-hand side and right-hand side derivatives which need not coincide. 

We require that a point of equilibrium qJ' (s = p = 0) is given and that a single 

path goes through this point. The equilibrium path can then be traced for example by 
integrating the first order equilibrium equations, i.e. the first order path derivatives of 
the equations of equilibrium. They have been derived in [2] without using advanced 
mathematical concepts such as B-differentiability [3] and read 

H'" T'T(V U")·-T')E'J,.,'=O +x + + 'P P + 0 0 , 

. , 0 l' 0 . *T l' 0 go:::: ,/1,0:::: ,g 0 /1,0 = . 

(7 a) 

(7 b) 
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Here and in the following, the dot indicates a right-hand side derivative with respect to s 
and the prime denotes a partial derivative with respect to p. With the index set of 
strongly active constraints 

(8) 

and the index set l' \ ( of weakly active constraints the corresponding constraint ma­

trices 

(9) 

and column vectors ofright-hand side path derivatives of Lagrange multipliers 

t" = {i:,} , j E ( ; i~ = {i~} , j E r \ ( (10) 

have been defined. The column vectors of the matrix T+' span the nullspace ~(E2) of 

the matrix E2 . The path derivatives of the generalized coordinates satisfy 

(11 ) 

such that we can set 

(12) 

with X· E Rn - m+ and m+, the number of strongly active constraints. The reduced Hessian 
is defined by 

H' = T'/ (\7 2 L')1" . 
+ + if! +' (13) 

and the column vector 

(14) 

can be computed according to 

(15) 

The inequalities (7 b) are to be interpreted in the sense that all elements of the column 
vectors are greater than or equal to zero. 

It is not guaranteed that the reduced Hessian H: is positive definite; and we can­

not expect Eq. (7) to have a unique solution. The path derivatives are not unique when 
the mobility of the system for a fixed value of p is greater than zero. An initially zero 
mobility, for example, can become greater than zero when advancing on the equilibrium 
path and an initially active unilateral constraint becomes inactive. We will now distin­
guish different cases depending on the features of the reduced Hessian and of a certain 
other matrix, and discuss the solution of the first order equilibrium equations. 
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2.1 REDUCED HESSIAN IS REGULAR 

We can solve Eq. (7 a) for .\:"' and substitute the solution into Eq. (16), yielding together 
with Eq. (7 b) a Linear Complementarity Problem (LCP) 

g; = G' i; + P f/ , 

g; ~ 0 , i; ~ 0 , g;r i~ = 0 

with 

(16 a) 

(16 b) 

(17 a) 

(17 b) 

After solving the LCP, we can compute the right-hand side path derivatives of rp' and 

.. ( according to 

., = T' H,-IT,T(E' i' - (\7 U" )·) rp + + + 0 0 rp p, (18 a) 

;, = (E')E' )-1 E') ((\7 2 1') ., (\7 U " )· - E' i' ) 
A+ + + + rp rp + " P 0 0 . (18 b) 

2.1. 1. Reduced Hessian is Positive Definite 
In this case, the matrix G' is also positive definite due to the regularity assumption. 
Therefore, the LCP (16) has a unique solution for p < 0 as well as for jJ > O. The two 

solutions correspond to two opposite directions which can be defined on the path, see 
Fig. 1. 

p G direction for p > 0 

t. equilibrium path 

direction for p < 0 

Figure 1. Solution of the LCP for positive definite reduced llessian 

2.1.2. Reduced Hessian is Not Positive Definite 
In this case, the uniqueness of the solution of the LCP is not guaranteed. Because there 
are matrices that are not positive definite but regular, bifitrcational behaviour can occur 
although the reduced Hessian is not singular. This is different from systems with bilat­
eral constraints. 
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If H: is for example negative definite G' is also negative definite. The matrix 

G' can even be negative definite in case of an indefinite reduced Hessian. We want to 

restrict the discussion to a point where only one constraint is weakly active and G' < 0, 

g' * O. This case might be rather common. The LCP, then, has two solutions for 

jJ g' > 0 and no solution for jJ g' < O. Thus, if there are two solutions for jJ < 0 

(jJ > 0), there is no solution for jJ > 0 (jJ < 0). The equilibrium path has reached a 

maximum (minimum) in the IP-p-space. We denote such a point a corner limit point. In 
contrast to a common limit point the condition jJ = 0 does not necessarily hold at a cor­

ner limit point (Fig. 2). The reduced Hessian is singular at a common limit point 
whereas at a corner limit point this matrix can be regular but is not positive definite. 

p r non-smooth 

J'\ (~nstablc) 
(stable) 

p 

smooth 

C~' 
\(unstable) 

(stable) \ 

-+----------.~ -+----------. ~ 

a) Corner Limit Point b) Common Limit Point 

Figure 2. Corner Limit Point 

In [2] the change of stability at a corner limit point has been discussed. It was 
found that the behaviour at a common and at a corner limit point is the same. When ad­
vancing on the equilibrium path and passing a corner limit point where a single con­
straint transforms from active into inactive, the dimension of the reduced Hessian in­
creases by one. With the dimension also the number of negative eigenvalues and thus 
the degree of instability changes by one. 

2.2 REDUCED HESSIAN IS SINGULAR 

The singularities that can occur if the index set r \ J: is empty are of the same nature 

as for a system with bilateral constraints. The situation appears to be more complex if 

the index set r \ J: is non empty. This case has been discussed in [2]. 

3. Satellite Antenna 

Fig. 3 shows a rigid-panel deployable antenna recently developed at Cambridge Univer­
sity [1]. The antenna consists of six wings which are divided into five panels, respec­
tively, and form a symmetric paraboloidal reflector. Each wing is connected to the next 
by a bar. The connections between adjacent panels, between the first panel of each wing 
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and a central hub, and between the bars and the wings are made by revolute joints. The 
antenna is deployed by simultaneously driving the six joints between the connecting bar 
and the last panel of each wing. This produces a complex motion in which the wings 
first unwrap in a six-fold symmetric fashion, and then rotate about the hub. 

(a) 

revolute joints 
between panel 

passive revolute joint 

connecting bar 

Figure 3. Rigid-panel deployable antenna 

(b) 

(a) Fully deployed; (b) Fully folded , the panels are shown flat for clarity 

For a simulation we assume that the reflector is not paraboloidal but flat and that 
panel 5 is triangular. The topology of the antenna, however, is retained. Hub, panels and 
joints are assumed to be rigid. The elasticity of the connecting bar is taken into account 
by two identical extensional springs of stiffness k which are attached to the points S1 or 
S3 of the connecting bar and to points S2 or S4 of panel 4, see Fig. 4. Moreover, we re­
strict ourselves to a six-fold symmetric deployment and retraction such that for a certain 
value p of the motorized angle, a state of equilibrium can be given by the angles 
({>2, . . ·,cPs between adjacent panels of one wing and by the angle ({Jl between panel 1 and 
the hexagonal hub. The angles are P=CA=O, i=1,2, . .. ,5, when the antenna is fully folded 
and ({Jl=90°, ({>2=C[J3=({J4=({Js=60° and p=180° when fully deployed. In both configurations, 
the global coordinates of the points S1 and S2 as well as 53 and 54 are the same and the 
springs are undeformed. The potential energy of the system is equal to the strain energy 
of the two springs and can be expressed as a function of the angles ({Ji and the driven an­
glep. 

We take into account the unilateral constraints of Tab. I; they are of the following 
kind: 

(1) Point C of wing 2 can touch a panel of wing 1, see Fig. 4. 
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(2) The hinge angles are constrained by brackets. 
In case (2), the mathematical constraints are simple lower or upper bounds. For con­
straints of type (1), the distance between point C and the corresponding panel serves as 
a constraint function. Note that the constraint functions depend only on the generalized 
coordinates. 

TABLE 1. Unilateral constraints 

nr. iG constraint nr. IG constraint 

Cl - panel 2 8 CS - panel 2 

2 Cl - panel 3 9 ({Js=60° fully opened 

3 C2 - panel 3 10 ({J4=60° fully opened 

4 C2 - panel 4 11 ({)3=60° fully opened 

S C3 - panel 4 12 ({>2=60° fully opened 

6 C3 - panelS 13 ({JI=O fully closed 

7 C4 - panel 3 

L 

wing 1 

Figure 4. Simulation model 
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The equilibrium path has been traced by simultaneously solving the LCP and in­
tegrating Eqs. (18). As a starting point, the fully folded antenna has been chosen and the 
control parameter p has been used as a variable of integration. As the integration pro­
ceeds, the constraint functions of the inactive constraints and the Lagrange multipliers 
of the active constraints must be checked for roots. In this way the index sets of the 
weakly and strongly active constraints and of the inactive constraints can be updated. 

The equilibrium path exhibits a corner limit point L1 and a common limit point 
L2, see Fig. 5. At point Ll, constraints 2 and 10 are strongly active and constraint 8 is 
weakly active. In order to determine the path derivatives at point LI the following LCP 
must be solved: 

g~ =-O.0015A~ -O.0269p , 

g ~ ~ 0 , A; ~ 0 , g ~T A; = 0 . 

(19 a) 

(19 b) 

Since the factors of A; and p are negative, the LCP has two solutions for p < 0 and no 

solution for p > O. The stability of the equilibrium path changes at L1 as mentioned 

above. The path is unstable between Ll and L2, as indicated by a thin line, and other­
wise stable, as indicated by a bold line. 

At p=-2.591586 ... , close to the common limit point L2, the integrator stops be­
cause the reduced Hessian of the Lagrangian is nearly singular. In the neigbourhood of 
this point, we switch the variable of integration to CPl. 

180 

160 
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120 

0' 100 
Q 80 

60 

40 

20 

0 

L1 Snap 

.... --

Snap 

o 10 20 30 40 50 60 70 80 90 

<l'1 [0] 

Figure 5. Equilibrium path of the satellite antenna 

When quasi-statically increasing p and thus deploying the antenna, the system 
follows the stable equilibrium path. At the corner limit point Ll, the antenna dynami­
cally snaps to another stable part of the equilibrium path as indicated by the arrow in 
Fig. 5. The snap involves strong vibrations and a sudden movement of the antenna 
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where the wings rotate as rigid bodies around the hub. This behaviour, has actually been 
observed during the deployment of a physical model of the antenna. 

4. Conclusions 

The first order equilibrium equations of a unilaterally constrained multibody system and 
possible solutions have been summarized. A rigid-panel deployable antenna served as 
an example for a deployable structure for which the mobility is reduced to zero due to 
the occurrence of unilateral contact. The equilibrium path that has been traced by inte­
grating the first order equilibrium equations exhibits a corner limit point and a common 
limit point. A corner limit point is a point where the equilibrium path is non-smooth and 
reaches a minimum or maximum in the qrp-space. Such a point is peculiar to systems 
with unilateral constraints. The equilibrium path becomes unstable at the corner limit 
point, leading to a dynamical snap after an initially quasi-static antenna deployment. 
This dynamical snap involves a sudden movement of the antenna and possibly strong 
vibrations. Thus, we have shown that a quasi-static deployment and retraction in general 
might not be possible if the occurrence of unilateral contact leads to instability phenom­
ena of this kind. 
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1. Introduction 

In large following waves there exist some interesting analogies between the dynamic 

behaviour of a steered ship in the yaw and roll directions. It is well known, for example, 

that capsize may occur due to fluctuations of the roll righting-arm [1). Similar 

fluctuations in the stiffness term may take place also in yaw, originating from the 

combined effect of rudder control with the wave induced yaw moment. This may give 

rise to course instability which will be realized as deviation from the desired heading 

and broaching [2). 

Consider a ship traveling in long following sinusoidal waves. In order to avoid 

coupling complications let us assume further that, due to high natural frequencies in 

heave and in pitch compared to the encounter frequency, the ship can maintain a state of 

quasi-static equilibrium on the vertical plane. If the waves are relatively steep, the 

geometry of the submerged part of the hull will vary noticeably, on the basis of the 

ship's position on the wave. This will be reflected in roll's righting-arm. Reduced or 

even negative roll restoring may arise when the middle of the ship is near to a wave 

crest, due to substantial "loss of waterline" (typically such a trend is more pronounced 

when there is low freeboard at midship combined with strong flare at the ends [3]). If 

roll restoring remains negative for sufficient time, so that heel finds the time to develop 

unopposed well beyond the "vanishing angle", then capsize due to the so-called pure­

loss of stability mechanism will be realised [4]. In this case the magnitude of roll 

damping affects little the survivability of the ship. Capsize can occur of course also in a 

typical parametric resonance fashion and here damping will be much more important 
279 
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[5]. Practically, the variation of restoring must be however quite intensive, so that large 

amplitude roll can build-up within a small number of wave cycles. 

The onset of yaw instability, in a similar wave environment, is a slightly more 

complex process because yaw is always coupled with sway. Furthermore, a control law 

for the rudder must be considered. Unlike with roll, ifthere is no active control in yaw, 

no restoring force exists in still water; but this may be created by the movement of the 

rudder which tends to bring the ship back on the correct course. If waves of length 

equal to the ship length or longer meet the ship from behind, they will create a moment 

that will be dependent on the angle between the direction of wave propagation and the 

ship's heading. This wave yaw moment works as a positive restoring component when 

the ship passes from crests (stabilizing effect). The opposite will be realized however in 

the vicinity of wave troughs where the waves will tend to orientate the ship 

perpendicular to the direction of their propagation. The relative magnitudes of the 

rudder's and the wave's moment will determine whether restoring becomes, in the 

region of the wave trough, negative. But even if it remains positive, a parametric 

mechanism with the potential to destabilize the horizontal-plane motion of the ship will 

have been set in place. The commonality of the underlying dynamics of yaw and roll is 

prevalent. 

Our first objective in this paper is to identify the correspondence between yaw and 

roll parameters from the perspective of these Mathieu-type phenomena. Furthermore, 

we shall introduce an approach for assessing the effect of surge motion. As is well 

known, when the waves are large, the nonlinearity of surge cannot be neglected [6]. A 

manifestation of this nonlinearity, is a virtual rescaling of time as the ship is spending 

longer time on the crests than on the troughs of the wave. In spite of the significance of 

this mechanism for the safety-critical motions, there has been no systematic analysis 

earlier on it. 

2. Equations of motion for yaw and for roll 

Consider the linear differential equations of sway and yaw [7], with the addition of 

wave excitation terms at their right-hand side: 

Sway: {m' - Y;)v' - y:v' + {m'x~ - Y;)r' + (m' - Y;)r' = y;g + Y(~ave) (1) 

Yaw: {m'x~ -N~)v' -N~v' + {I; -N;)r' +(m'x~ -N;)r' = N~g +N;wave) (2) 

In the above v', r' are respectively sway velocity and yaw angular velocity, g is the 

rudder angle, m' is ship mass and xG is the longitudinal position of the centre of 
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gravity; Y;, Y;, N~, N; are acceleration coefficients (added masses/moments of inertia) 

and Y:, Y; ,N~, N; ,Yo are velocity coefficients (hydrodynamic damping terms). The 

wave's sway force and yaw moment are respectively, ~'wavel' N;wave)' The prime 

indicates nondimensionalised quantity and the overdot differentiation over time. 

At first instance we shall assume that the yaw and sway velocities are restrained from 

building-up to high values (thus they remain small; as a matter of fact the resulting 

damping forces may be considered linear) through use of appropriate rudder control. 

Additionally, ship behaviour is examined at "some distance" from the region of surf­

riding, so that, for this first part of the paper, it is not unrealistic to assume that surge 

velocity is constant. 

We express the wave terms Y(~ave)' N;wave) in respect with the frequency of encounter 

(rather than as functions of absolute wave frequency and position). Also we neglect 

some phase difference (relatively to the wave) which might exist in these two types of 

excitation: 

Y/wave) = y~ If/sinlm; t') 

N;wave) = N: If/coslm; t') 

(3) 

(4) 

The following notation is applied: Y~, N: are wave force/moment coefficients; If/ IS 

the ship's heading relatively to the wave (If/ = 0 when the sea is exactly following -

generally, If/ is assumed small). 

Consider further rudder control with a linear law based on two gains, kl and k2 : kl 

mUltiplies the instantaneous heading deviation from the desired course If/r' while k2 

mUltiplies yaw's angular velocity: 

(5) 

Substituting (3), (4) and (5) in (1) and (2), uncoupling yaw from sway and using well 

known expressions for system gain and time constants, K', ~', T;, T; [7], a 

differential equation of heading angle with the following structure is obtained: 

The above third-order differential equation has time-dependent coefficients in two 

places. As is well known however, if ~' is much greater than T; and T; , we can use the 

so-called simplified yaw response model of Nomoto [8]. In that case the order of 

equation (6) is reduced by one: 

T' 1;/ + ift' = K'(j + A' If/ cos(m;t' -a) (7) 
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K',T' are respectively system gain and time constants, If/ is relative heading angle 
(assumed small), t5 is rudder angle, A' is wave excitation amplitude, m; is the 
encounter frequency and a is a phase angle. 

By coupling (7) with the autopilot equation (5) and dropping for simplicity the phase 

angle a, we obtain after some rearrangement: 

•• , • , , 2 [1 h (' ')] . If/ + r If/ + m O(yaw) - cos m.t If/ = } (8) 

In the above m~(yaw) = .Jk1K'/T', r=(I+k~K')IT'(damping), h=A'lk1K' 

(amplitude of parametric variation of restoring), j = k1K'If/r/T'. It is easily recognized 

that (8) is Mathieu's equation with the addition however of bias-like external static 

forcing term, j . 

For stability, positive T' is required as 1fT' is the inverse of the damping of the 

unsteered vessel. However, large positive T' implies slow convergence towards the 

corresponding steady rate-of-turn which is determined by the value of the static gain 

K' . A trend exists for large T' to appear in conjunction with large K' which gives a 

nearly straight-line spiral curve. The effect of active control on damping is represented 

by the quantity k~ K'IT'. It depends thus on the yaw rate ("differential") gain term in 

the autopilot. If T' < 0, suitable choice of k~ can turn the damping of the system 

positive since k; mUltiplies the positive quantity K'IT', thereby yielding stability for 

the steered ship in calm sea. The wave effects are lumped into the restoring and 

independent-periodic-forcing terms since the quantities K' and T' were assumed to be, 

at first approximation, unaffected by the wave. If the amplitude of wave excitation A' 

exceeds k1K', then on the basis of (11) negative yaw restoring will arise around the 

trough. Should the duration of operation under negative restoring be long enough, 

undesired turning motion will be initiated ("broaching"). From a dynamics perspective 

there is complete equivalence with a capsize event of the so-called "pure-loss" type. It 

can be avoided if the proportional gain kl is chosen to be always greater than A'I K' 

even for the most extreme wave environment where the ship will operate (it should be a 

matter of further investigation to what extend this is technically feasible). A notable 

difference between the manifestation of this instability in roll and in yaw is that in roll it 

arises near the crest of the wave, whereas in yaw the ship becomes vulnerable near a 

trough. 

We may rewrite (8) on the basis of heading error If/l = If/ -If/ r and then apply the 

transformation r = m~(yaw) t' : 
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d 2 ' d' ~+ 2t; ....J2+[I-hcos(Qr)]1fI = JcosQr 
dr dr 

(9) 

where Q = (j);/(j)~(yaw) and h = A' /(k j K'). Also, J = A' 1fI'/ (T' (j)~(yaw) 2) which means 

that for IfIr = 0 the external forcing term of (9) will be zero. The damping ratio is given 

by the expression: 2t; = (1 + k2K')/ ~ kj K' /T' (the presence of kj inside t; should be 

noted). 

It is obvious from (9) that parametric instability of yaw may also arise, very much 

like that of roll. To establish the analogy we remind that the generic linearised in x 

equation of roll for a following sea is: 

d 2 ' d' ~+ 2t; 1+ [1-hcos(Qr)]cp' = 0 
dr dr 

(10) 

cP' is the normalised roll angle, cp' = cp/CPv , with rp the true roll angle and CPv the angle 

of vanishing stability. Although for the damping ratio, scaled time, amplitude of forcing 

and frequency ratio we have used the same symbols as in roll, the expressions from 

which we derive their values will be of course different in the yaw case. The damping 

ratio will be: 2t; = B (j)O(roll) /(M g (GM») where B is the dimensional linear damping 

coefficient, M is ship mass and (GM) is the metacentric height. Also, Q = (j)~/(j)~(rOIl) 

and r = (j)O(roll) t , with roll's natural frequency given by (j)O(roll) = ~Mg (GM)/(I + M) . 

With substitution of (j)O(roll) in t; we may obtain further: 2t; = B/ ~(l + M) M g (GM) . 

Also, the amplitude of the parametric is h = 8(GM)/(GM) where 8(GM) is the 

difference in the values of metacentric height at the crest and in still water. This is a 

common assumption which may be sufficient for the preliminary character of this study 

but of course it results in a highly idealised formulation because the average (GM) has 

no reason to be identical with the still water (GM). In addition, the variation from 

trough to crest may not be sinusoidal. 

2.1. CONDITIONS AT EXACT RESONANCE 

For overtaking waves the frequency of encounter will be positive and for the case 

where no damping exists the condition of exact resonance will be: (j)e/(j)o = 2/77, 

1] = 1,2,3,... «(j)o may be the frequency of encounter of yaw or of roll). Thus with 
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increasing 1] the vertices will tend to accumulate nearer to the zero frequency of 

encounter. 

The expreSSIOn of the encounter frequency for a following sea IS 

OJ e = (21r I A )(c - U). In yaw, time is commonly nondimensionalised on the basis of 

U I L (noted the resulting time-dependence). Therefore, the expression of the 

nondimensional frequency of encounter in yaw is: OJ; = 2nL(c - U )/(AU). With the 

substitutions OJ; = 2OJ~(yaw) /1] and clu = Fnwave I Fn (Fnwave is the Froude number 

corresponding to wave celerity) the parametric equation of the vertices of the 

corresponding undamped system is Fn = Fnwave /(1 + AOJ~(yaw) /1J nL) ,. Given that 

Fnwave = ~ AI(2nL) we may write further: 

(I1a) 

Consider further the domain of variation for the yaw natural frequency, which, as 

was found earlier, is expressed as: OJ ~(yaw) = .J k \ K 'IT' . It is known that for 

conventional ships, the ratio K'IT' usually takes values within the range [0.3 -1.4] (see 

for example [9]). It is derived that OJ~(yaw) should lie in the range [0.55..jk; - 1.18..jk;]. 

With a proportional gain k\ between 1.0 and 2.0, OJ~(yaw) should then be between 0.55 

and 1.67. In Fig. 1 a is shown how the critical Fn would vary as function of the wave 

length-to-ship-length ratio AIL, for three different values of OJ~(yaw): 0.5, 1.0 and 1.5. 

We shall consider now roll motion: The natural frequency is nondimensionalised on 

the basis of ship length and acceleration of gravity, OJ~ = OJo ~ LI g (thus it is not speed 

dependent, at least in an explicit sense). The difference in the nondimensionalisation 

method between yaw and roll results in different parametric expressions of the critical 

Froude number: 

(lIb) 

It is well known that container vessels are sometimes susceptible to parametric 

resonance, one of the reasons being that their operational speed falls near to the region 

of principal resonance which is the most dangerous. Extensive model tests have been 

carried out recently in Japan in order to identify the critical conditions for capsize. The 

occurrence of parametric instability was one of the investigated scenarios [10]. For an 
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examined containership the measured natural frequency was (O~(rOI/) = 0.566. In Fig. lb 

are shown, for a range of roll natural frequencies, the critical Froude numbers for the 

first few resonances (as for the similar equation for yaw, damping is not included). 

We should note that, unlike the parametric instability of roll which is well verified 

experimentally, for yaw little has been attempted so far on the experimental front. 
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Fig. 1: Critical Froude numbers for stability of idealised undamped system. We varied the pair ( m; ,11) 

where m; is the corresponding nondimensional natural frequency, and 11 is the order of the 

resonance. 

2.2. MAGNITUDE AND EFFECT OF DAMPING 

Even when a ship is equipped with bilge keels and fins, the damping ratio is usually 

quite low and very rarely goes above a value of, say, 0.2 (it should be noted however 

that S depends not only on the hydrodynamic characteristics of the hull but also on 

factors such as the metacentric height and the moment of inertia).For yaw on the other 

hand, the damping ratio depends strongly on the autopilot's gains. Common values are 

known to be in the range 0.8 < S < 1.0 [11]. Here lies therefore a very significant 

difference between the roll and yaw equations: The damping ratio of yaw is normally 

very large. This practically means that in order to be placed in a resonance region, the 

loss of yaw restoring at the trough should be very considerable. Usually the requirement 

implied by this is the existence of very steep waves. It is very interesting, and perhaps 

relevant, that about 40 years ago, during model experiments of broaching, it had been 

observed that as the encounter frequency departs from the zero value, the required wave 

steepness for broaching shows a very considerable increase [12]. 
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While expressions of the stability boundary are not so difficult to find for relatively 

low damping, see for example [13], the same may not be said for the very large c:; 
appearing in the yaw equation. As a first indication of the effect of c:; on the critical h 

we may use the expression of Gunderson, Rigas & VasnVleck (1974) which is 

applicable for relatively large damping values: 

(12) 

For c:; as low as 0.3 the required h, according to (12), is 0.67 and 0.87 respectively 

for the principal and the fundamental resonance. One should bear in mind however that 

these values reflect long-term behaviour. For the build-up of significant motion within a 

small number of wave cycles (in a practical context this is most relevant) considerably 

higher values of h are required. 

2.3. NONLINEARITY . 

In the roll equation nonlinearity exists in the restoring term (strong) and in damping 

(mild). Their effect is now relatively well understood, see for example [10, 13-16]. 

In yaw, nonlinearity is possible to appear in the damping term if the yaw velocity is 

allowed to become large (for example when the autopilot gain values are low). This 

relates with the S-shaped curve ("spiral curve") connecting the steady rate-of-turn with 

the angle of the rudder in still water for directionally unstable ships. It is common to 

take account of this nonlinearity through a cubic term of yaw velocity. After coupling 

with the autopilot equation we obtain the following nonlinear version of equation (8) 

which is left for future consideration: 

(13) 

3. Static and dynamic loss of stability 

When roll stability in a following sea is examined, it is customary in naval 

architecture to distinguish between two mechanisms of capsize: (a) Pure-loss of 

stability, where the ship departs from the state of upright equilibrium due to negative 

restoring on a wave crest. Then, heel increases monotonically until the ship is 

overturned. In this mode the magnitude of damping plays little role. (b) Parametric 

instability, which is the classical Mathieu-type mechanism where the build-up is 
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oscillatory and the magnitude of 

damping is very important. In Fig. 

2 are shown the domains of pure 

loss and of parametric instability 

for a ship with a generic cubic-type 

restoring curve and with linear 

damping. 

Instabilities of a similar nature 

are possible in yaw as well, 

resulting in broaching behaviour 

(sudden turn and deviation from 

the desired course). Especially the 

instability usually termed as 

broaching due to surf-riding, 

happening at Froude numbers near 

to the wave celerity, may be 

paralleled with the pure-loss 

mechanism[2]. 

A parametric-type mechanism 

of broaching also exists, which is 

more likely to happen at lower 

Froude numbers [12]. For this 

mechanism the discussion given in 

sub-section (2.2) is most relevant. Higher wave steepness is required for the occurrence 

of this instability due to the dominant effect of the large damping factor. 

4. The effect of surge 

We shall consider now the effect of surge motion for pure-loss and for parametric 

instability. An implicit assumption in our analysis so far, and also underpinning all 

earlier studies on ship parametric instability, has been that the forward speed may be 

assumed as constant. Such an assumption is not however always consistent with the 

wider context of the analysis. For dangerous dynamic behaviour of roll to arise, steep 

and long waves are required. Waves of this kind will incur also significant nonlinear 

effects on surge. The characteristic of large-amplitude surging is that it is asymmetric 

and the ship stays longer near the crests than near the troughs. This effect is imported 
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into the yaw and roll dynamics through the restoring tenns of the corresponding 

equations. 

Consider the roll motion first: The nonlinearity of surge is detrimental for stability 

because around the crest (where the ship stays longer) restoring capability is reduced. 

For yaw on the other hand, the effect is opposite. Yaw stability is not worsened because 

the passage of the ship from the trough is quicker. The danger arises in steeper waves 

and especially during the process of capture in surf-riding, Fig. 3. 

1Or-:-----~---~--::---=------, 

11 (m/s) 
8/ 
61 

, 0.4 
f{J 0.2 

O'---..--.~ 

-0.2 

-0.4 

-0.6 

-0.8 
_IL-_____________ ~~---L~ 

20 40 60 80 100 120 140 

t (s) 
20 40 60 80 100 120 140 

t (s) 

Fig. 3: Parametric instability and capsize due to large amplitude surging (very near to the boundary 
of surf-riding). Time-domain plots of surge velocity (left) and roll angle (right). The ship was 
initially with zero velocity at a crest. 

The three main forces acting in the surge direction are the resistance, the wave and 

the propulsion force. As has been shown in [17] these forces result in the following 

differential equation for the surge motion: 

d 2x dx 
(m-X)-2 + ([3a3c2 +2(a2 -bt)c+at]-b2n}--+ 

U dt dt 

+[3a3c+(a2 _bt )](dx)2 +a3(dx)3 + Jsin(lex) = 
dt dt 

(14) 

= btc2 + b2cn + b3n2 - (atc + a2c 2 + a3c3) 

- Xu is the surge added mass, c is the wave celerity, n is the propeller's rate of 

rotation, x is the position of the ship on the wave measured from a moving system fixed 

on a wave trough; at, a2 , a3 are the coefficients of the resistance polynomial. 

Likewise, bt , b2 , b3 are the thrust-related coefficients. The velocity u of the ship for an 

observer fixed on the earth is given from the relation u = c - dx/ dt . 
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Equation (14) is to be solved 

simultaneously with the equation 

of yaw or of roll, depending on 

whether the capsize or the 

broaching problem is considered. 

We have identified how the 

transition curves are modified 

when roll is coupled with surge. 

This coupling arises due to the 

existence of x in the restoring 

term of the roll equation: 

¢' + 2,u <jJ' + O)~ [1- h cos(kx )]tp' = 0 

(15) 

On the basis of the above 

equation we have found for what 

combinations of Fn and h the 

normalised roll angle cp' exceeded 

the value of 1.0 (from an initial 

perturbation 0.01 and with zero 

initial velocity) within a specified 

time (t = 200 s). The calculations 

were based on a ship with O)O(roll) = 0.84 (O)~(roll) = 1.577) and ,u = 0.0585. Of course, 

having exceeded the value 1.0 does not necessarily mean capsize, since we may sti11lie 

inside the safe basin. But for a practical analysis this is a good basis for comparisons. 

Fig. 4 provides clear evidence that surge motion has a profound effect on the "capsize" 

domains. Further investigations are currently underway on this matter. For the 

considered ship, the principal resonance could not be realised in following waves 

because a negative Froude number is required for this (the ship should be backing rather 

than going forward). The lower part of the fundamental is the only place where there is 

some commonality with the conventional ('damped') Strutt diagram. The upper part of 

the fundamental has become considerably wider. The next resonance occupies an 

enlarged domain; but the two after this seem to degenerate. This may relate with the 

emergence of the surf-riding domain where the behaviour of the ship is stationary. 
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There, the ship will travel with the speed of the wave, having its middle located near to 

a trough. 
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NONLINEAR THREE-DIMENSIONAL OSCILLATIONS OF FLUID 

CONVEYING VISCOELASTIC TUBES WITH AN ADDITIONAL MASS 
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Abstract. The loss of stability of the trivial downhanging eqUilibrium position of 

a slender circular tube conveying incompressible fluid flow is studied. The tube is 

clamped at its upper end and free at its lower end. In addition, the tube is carrying 

a concentrated mass. Increasing the flow rate quasi statically the loss of stability 

of the downhanging equilibrium position is studied. For this system experimen­

tal results are available in (Copeland, Moon, 1992) for the mass located at the 

end of the tube. The main objective of this paper is to compare the experimental 

results of (Copeland, Moon, 1992) with theoretical results obtained by means of 

Equivariant Bifurcation Theory which is used for the non-linear analysis of the 

0(2) (rotationally) - symmetric system. 

1. Introduction 

Thanks to the book (Golubitsky, Stewart, Schaeffer, 1988), Equivariant Bifurca­

tion theory has now become a widespread method to treat non-linear stability 

problems of solutions of symmetric systems. Basically there are two model prob­

lems in fluid dynamics, namely the convection in a layer (Benard problem) and the 

convection in the gap between two concentric cylinders rotating at different angu­

lar velocities (Taylor Coutte problem) (Craik, 1985). For both problems extensive 

291 
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theoretical analyses have been partly compared with experimental findings. How­

ever, both problems as well in the mathematical as in the experimental analysis 

pose considerable difficulties. On the other hand, there exists a third model prob­

lem, well studied in engineering, possessing basically the same great variety of so­

lutions, but both in the mathematical analysis and in the experimental realisation, 

it seems to be less complicated than the two mentioned problems from fluid dy­

namics: The vertically downhanging visco-elastic fluid conveying tube perform­

ing three-dimensional motions. Again this is a problem having 0(2)- symmetry. 

The recently published book (Paid~ussis, 1998) gives an excellent overview of 

this problem. 

Loss of stability of equilibrium positions of fluid conveying tubes is a problem 

which has been extensively treated in engineering «Paidoussis, 1998) for a long 

time. Surprisingly, almost no papers in mathematical journals appeared with the 

exception of (Bajaj and Sethna, 1984).Later in a series of papers (Steindl, 1992), 

(Steindl, Troger, 1992), (Steindl, Troger, 1995a), (Steindl, Troger, 1995b) the 

three-dimensional motion of a downhanging tube constrained by an elastic point 

support is treated. Varying the stiffness of the support as second parameter, be­

sides the flow rate as bifurcation parameter, all Codimendion Two bifurcations 

classified in (Golubitsky, Stewart, Schaeffer, 1988) could be found and physically 

interpreted. The nice feature of the tube problem is that almost everybody has an 

intuitive feeling for the qualitative interpretation of the various different solutions. 

The tube with an elastic support was a nice model theoretically but, as it turned out 

later, when we tried to make experiments to check some of our theoretical results 

only few of the many different motions could be observed in our experiments. This 

was due to the fact that tubes which are commercially available are never perfectly 

straight and, hence, due to geometric imperfections only few of the theoretically 

found solutions could be observed in the experiment. 

On the other hand, in (Copeland, Moon, 1992) careful experiments of three­

dimensional tube motions are reported with a different tube system. There a mass 

is attached to the end of the tube. This mass had the pleasant effect in the ex­

periment that even if the tube without mass was not perfectly straight the added 
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Figure 1. Mechanical model of the fluid 

carrying tube with an additional mass m 
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Figure 2. Fixed spatial frame {e;}, and mov­

ing orthogonal frame {til. 

mass streched the tube and hence decreased or even extinguished small geometric 

imperfections. 

We thought it worthwhile to study the tube system with a point mass (Fig. 1) to 

see how well we could reproduce theoretically both qualitatively and quantita­

tively the solutions found experimentally in (Copeland, Moon, 1992). We note 

that also in (Paidoussis, Semler, 1998) the same problem is treated experimentally 

and theoretically, however, restricted to planar motions of the tube. 

In our theoretical model we assume the mass to be a point mass and that the 

position (0 of the mass along the tube could still be an additional parameter. For 

a fixed position (0 of the point mass we have a two parameter bifurcation problem 

with the flow rate U and the value m of the mass as the two parameters. Moreover, 

the considered system is 0(2) - symmetric. 

We have to point out one important difference between this work and our previ­

ous work concerning the elastically constrained tube. In the latter case we had two 

generic types of loss of stability varying the stiffness of the support. Namely loss 

of stability at a zero root (divergence bifurcation) for a stiff spring and at a pair 

of purely imaginary roots (Hopf bifurcation) for a soft spring. However, for the 



www.manaraa.com

294 

problem of the tube with the added mass, for example, attaching the mass at the 

end of the tube and varying its value, always loss of stability due to an imaginary 

pair of eigenvalues occured. Hence for this problem the coupling between diver­

gence and flutter will not occur and the variety of solutions will be much less than 

reported for example in (Steindl, Troger, 1995a) or (Steindl, Troger, 1995b). 

2. Mechanical model and equations of motion 

We take the tube equations derived in (Steindl, Troger, 1996) which we only have 

to supplement by the condition following from the additional point mass. Hence 

we have the following relations: 

r' = Be3 

B' = BO 

T' = T x 0 + F x e3 
(1) 

F' F x n + BT( -,e3 + r + 6i- + 2..jjJei-' + er") 

subject to the boundary conditions 

r(O) = 0, B(O) = E, F(l) = 0, T(l) = 0 , (2) 

and the intermediate condition at the location (0 of the point mass 

(3) 

All variables and parameters in (1), (2) and (3) are dimensionless. They are defined 

from the physical quantities by 

_ s 
s = £' 

_ r 
r = R.' t = vt, 

'8 = 6v, 

fEJ 
v=V~' 

(3 - mF - , 
mF+mT 

£3g (mT +mF) ,= EJ 

0=£0, 
- £T 
T= EJ' 

mg£2 ,2 = EJ ' 
GJT ,3 = EJ: 

However, the tilde on the dimensionless quantities is dropped in (1), (2) and (3). 

According to Fig. 2 the deformation of the tube is described by the radius vector 
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r(s, t), which represents the displacement of the point s of the axis of the tube 

and by the rotation matrix B(s, t) E SO(3), which defines the orientation of the 

moving frame {ti} with respect to the frame {eil which is fixed in space. tl and 

t2 span the cross-section which is assumed to be orthogonal to the axis (no shear 

deformation) but may be twisted. The main parameters are {!, proportional to the 

flow rate and r to the point mass. R. is the length of the tube and 0 < ~ ::; 1 

describes the position of the mass along the tube. The resultant force and moment 

in the cross-section are denoted by F and T. There is only a relationship between 

the components of T and the components of n which represent curvature and 

twist, since the tube is assumed to be inextensible. For a slender tube we still can 

assume that large displacement of the tube will result in small strains and hence 

the simple linear Kelvin-Voigt law of viscoelasticity 

is stipulated. EJI = Eh = EJ and GJT are bending stiffness and torsional 

rigidity, respectively. The material damping coefficients are 0::1 = 0::2 and 0::3. 

Our numerical investigations are based on numerical data taken from (Copeland, 

Moon, 1992) and concerning the internal damping from (Sugiyama et. aI, 1985) 

where it is shown that the O::i are very small. Nevertheless it turns out that material 

damping has a major influence both on the qualitative and quantitative behavior 

of the tube at loss of stability of the straight configuration. 

The equivariance conditions of the 0 (2) -symmetric system are derived in (Steindl, 

Troger, 1995a). 

3. Stability boundary in parameter space 

In order to calculate the stability boundary (Troger, Steindl, 1991) in the (r, (!) 
- parameter plane, we perform the linearization of the equations of motion about 

the trivial downhangiog equilibrium position 

r = se3, B=E, F = [H(~ - s) r + (1- S)he3, (5) 

which is a solution to (1) for all values of (! and r. The state (5) is invariant under 

all transformations in 0(2) x 81 (rotations and reflections about the vertical axis 
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and arbitrary time shifts). The function H in (5) denotes the Heaviside unit step 

function. 

The linearization explained in detail in (Steindl, Troger, 1995a) results in two 

identical bending equations in the two dependent variables Xl and X2 in the form 

(6) 

for i = 1,2. For F3 the proper component from (5) must be substituted. Further 

we have the equation 13(X" + a3X") = 0 for the twisting angle X. Similiarly to 

(6) also the boundary and jump conditions decouple 

Xi(O) = 0, x~(O) = 0, X(O) = 0 (7) 

x~'(I) + alx~'(I) 0 

13(X'(I) + a3x'(I)) 0 

xi"(l) + alxi"(l) { f(rx~(I) + xi(I)) if ~ = 1 
= 

0 if ~ < 1. 

(8) 

In case that ~ < 1 the jump condition at ~ must be added 

For our numerical calculations we assume that the mass is located close to the end 

of the tube (~ = .95 and ~ = 1). The trivial state (5), obviously, is asymptotically 

stable for zero flow rate {! = O. Now we increase the flow rate {! quasi statically un­

til the trivial downhanging state of the tube becomes unstable. Varying the value 

of the end mass we look for zero and purely imaginary eigenvalues at the critical 

flow rate. However, a zero eigenvalue was never found. Hence the loss of stability 

always occurs due to a Hopf bifurcation. The stability boundary in (f, (!) - para­

meter space is shown in Fig. 3 and Fig. 4. We were very curious to see whether an 

experimental result reported in the paper (Copeland, Moon, 1992), which is rather 

unexpected, could be also reproduced from the theoretical analysis, namely that 

increasing the amount of the end mass from zero, first, has a destabilizing effect, 

and only after the end mass is increased beyond a critical value a stabilizing effect 

for the downhanging tube configuration can be noticed. In fact this property is 

also supplied by the theoretical analysis. Further we point out two interesting facts 
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Figure 3. Stability boundaries in 

(r, e)-space for ~ = 0.95 and 

al = O. Two different curves are 

obtained, one of which doesn't in­

tersect the r = 0 axis and would 

therefore be missed in simple con­

tinuation studies. 

Figure 4. Stability boundaries in 

(r, e)-space for ~ = 1 and differ­

ent values of internal damping al. 

For al = 0 two boundaries cor­

responding to different mode num­

bers intersect at r ;:::;: 0.35 lead­

ing to a codimension 2 bifurcation 

with Hopf/Hopf interaction. 

to be concluded from Fig. 3 and Fig. 4. First, the strong qualitative influence which 

adding of slight internal damping has on the behaviour of the tube in comparison 

to an undamped tube model. And, second, that for the undamped model a coin­

cident eigenvalue at r ~ 0.35 occurs (Fig. 4) which would result in a Hopf-Hopf 

interaction for the nonlinear system. 

4. Center manifold reduction to bifurcation equations 

The bifurcation equations, that is, the amplitude equations of the critical modes 

can be derived by Center Manifold theory (Troger, Steindl, 1991). 

The key condition for the possibility of the reduction of the infinite dimensional 

system governed by partial differential equations (1) and the corresponding bound­

ary (2) and intermediate (9) conditions to a low dimensional bifurcation system 
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governed by ordinary differential equations is that besides the critical eigenvalues, 

which are located on the imaginary axis, all other eigenvalues must be strictly neg­

ative and a resolvent condition must be satisfied (Mielke, 1988). 

For the calculation of the nonlinear terms in the bifurcation equations we have to 

note that though the bending and twisting motions decouple in the linearized case, 

there is a nonlinear coupling between bending and twisting in the nonlinear case, 

which must not be neglected (Steindl, Troger, 1995a). 

Due to the symmetry properties each critical eigenvalue appears with multiplicity 

two and hence the bifurcation equations are a set of four first order ordinary dif­

ferential equations in the generic case of a Hopf bifurcation. In the special case of 

a Hopf-Hopf interaction, mentioned in the caption of Fig. 4, one would obtain a 

system of eighth order (see for details in (Troger, Steindl, 1991». 

Here we only treat the generic case. The simplification of the equations obtained 

from center manifold theory due to symmetry and normal form theory is explained 
I 

in detail in (Troger, Steindl, 1991) for the loss of stability at a purely imaginary 

pair which also applies here. Finally a set of equations of the form 

h = rl{'\ + crr~ + c2r~) 
r2 r2{'\ + c2r~ + crr~) 

(10) 

up to third order terms is obtained. The ri are the amplitudes of wave motions. 

Stationary solutions of (10) are: 

(1) Zl = Z2 = 0: TS, downhanging tube 

(2) Zl i= 0, Z2 = 0: TW, rotating tube with frequency w 

(3) Zl = Z2 i= 0: SW, planar oscillating tube with frequency w 

(4) Zl i= 0, Z2 i= 0 : MW, modulated rotating tube, motion on 2-torus. 

Representing the solutions in the bifurcation diagram Fig. 5 we see how the two 

basic solutions for the Hopf bifurcation in a O(2)-symmetric system, namely the 

travelling wave TW which is a rotating tube motion and the standing wave SW 

which is a planar tube oscillation, are partitioned in the cr, C2 plane. In addition 

their stability properties are given. We see that only two domains exist where 

stable planar standing oscillations (SW) or stable rotating solutions (TW) exist. 
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Figure 5. Bifurcation diagram for the 

O(2)-symmetric Hopf bifurcation.The amplitudes 

are shown in their dependence on the flow rate g. 

(Full lines: stable solutions; broken lines: unstable 

ones), The curve in the diagram shows for increas­

ing end mass which solution is attained. The sketch 

above is an enlargement about the origin 

In fact the TW branch are two solutions, one rotating in clockwise direction and 

the other one in counter-clockwise direction. In Fig. 5 a path is show which shows 

which of these two solutions is present in the tube motion for increasing values of 

the mass. In those domains where no stable solutions are found from a third order 

analysis we would have to perform, first, a higher order analysis and, second, to 

look for the MW solution, that is the modulated wave or quasi-periodic motion. 

5. Concluding remarks 

The most important aspect of this analysis concerning its mathematical aspect is 

to show that theoretically obtained solutions are in good agreement with exper­

imental findings reported in (Copeland, Moon, 1992). This shows that, first, our 

mechanical tube model obviously is quite accurate and, second, that Equivariant 

Bifurcation theory which replaces an infinite dimensional problem by a low di­

mensional system of amplitude equations is an accurate method of analysis. How­

ever, we have to mention that oviously the most important point in comparing 

theory with experiment is the accurate assigning of the amount of internal damp­

ing. This is a very influencial parameter both qualitatively and quantitatively. 
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NONLINEAR DYNAMICS OF A RIGID ROTOR ON 
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Abstract. This paper presents the influence of bearing liner compliance on 
the long-term dynamics of a symmetric rigid rotor on short journal bearings. 
Both balanced and unbalanced rotors are investigated for different values 
of the compliance, using (nondimensional) rotor speed as the bifurcation 
parameter. The results show a decrease in the onset speed of instability of 
the balanced rotor, and a considerable influence on the 1/2 subharmonic 
solutions in case of unbalance excitation. 

1. Introduction 

In the classical short journal bearing model, the bearing surface is assumed 
to be rigid, and the bearing reaction force can be expressed as an analytical 
function of the journal position and velocity. However, if the bearing is lined 
with an elastic material, deformations are no longer negligible, and the 
classical model fails. In this paper, a compliant bearing model is presented 
and applied to both balanced and unbalanced symmetric rigid rotors on 
short journal bearings. 

Childs et al. (1977) introduced the journal bearing impedance method 
for rotor dynamic applications, defining an analytical description of the 
bearing reaction force as a function of the journal position and velocity. 
A list of impedance definitions was published by Moes and Bosma (1981). 
Van de Vorst et al. (1996) investigated the long-term dynamics of a flexible 
rotor-bearing system with a journal bearing, using the impedance method. 
Higginson (1965) studied the static characteristics of a long bearing with 
a thin elastic liner. Nilsson (1978) determined dynamic coefficients of a fi­
nite length 1800 partial arc journal bearing with a thin liner, lubricated by 
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a fluid with a pressure dependent viscosity. Mao et al. (1983) and Zhang 
et al. (1986) calculated dynamic coefficients of a finite length compliant 
journal bearing, using the FEM to model bearing elasticity. A model of a 
dynamically loaded flexible short journal bearing was presented by Van der 
Tempel et al. (1985). With this model, pressure and film thickness distri­
butions can be calculated if the load on the bearing is known as a function 
of time. Therefore, it is unsuitable for rotordynamic applications. 

In contrast to bearings with a rigid surface, where the lubricant film 
thickness is a function of the position of the shaft, the film thickness of a 
compliant bearing is an unknown and has to be included as a DOF in the 
model of the rotor-bearing system. The time derivative of the film thickness 
follows from the Reynolds equation, and is added to the equations of mo­
tion of the rotor. The lubricant pressure is found from the film thickness, 
using the elastic model of the bearing liner, and integration of the pressure 
distribution yields the bearing reaction force. 

AUTO 97 (Doedel et al., 1998) is used to perform the calculations for 
different values of the bearing liner compliance, using (nondimensional) 
rotor speed as the bifurcation parameter. Time is discretized with 10 and 
20 mesh intervals for harmonic and 1/2 subharmonic solutions, respectively, 
with 4 collocation points per interval. The results show that increasing the 
bearing liner compliance decreases the onset speed of instability of the 
balanced rotor. Also, a considerable influence of the compliance is found on 
the 1/2 subharmonic solutions in case of unbalance excitation. 

2. Compliant Short Journal Bearing Model 

Figure 1 shows the geometry of a plain journal bearing with an elastically 
deformed liner, where the dashed circle represents the undeformed situa­
tion. In the center of the undeformed bearing, the origin of the stationary 
x, y, z-system is located. The circumferential coordinate () is measured from 
the positive y-axis. The journal with radius R is rigid and rotates with con­
stant angular speed f2. The position of its center is given by the eccentricity 
vector e, with attitude angle 'Y. The radial clearance of the un deformed 
bearing is given by C, the bearing liner deformation is measured by U, and 
the lubricant film thickness by H. 

To find H, the cosine rule of triangles is applied to Fig. 1: 

(R + H)2 = (R + C + U)2 + e2 - 2(R + C + U)e cos(7r - () + 'Y) (1) 

Expanding this equation, dividing by R2, and discarding 2nd order terms 
in H/R, G/R, e/R, and U/R yields: 
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where ex and ey are the eccentricity components in the x- and y-directions, 
respectively. Introducing the nondimensional quantities h = HjC, E = ejC, 
and u = U jC, this equation is rewritten into: 

h = 1 + Ex sin e - Ey cos e + u (3) 

The pressure p in the lubricant film is governed by the Reynolds equa~ 
tion for short journal bearings: 

~ (H3 0P) = 6 (n OH 2iI) oz oz p, oe + (4) 

where p, is the lubricant viscosity, and an overdot denotes differentiation 
w.r.t. time t. Using the nondimensional quantities n* = njno (no will be 
defined later), p* = (CjR)2pj6(LjD)2p,nO (L and D are the bearing length 
and journal diameter, respectively), z* = zj L, and T = not, this equation 
becomes: 

~ (h3 0P*) = 4 (n*Oh + 2h') oz* oz* oe (5) 

where a prime denotes differentiation w.r.t. T. In lubrication literature, n 
is normally used to scale the equations; here however, no is used for that 
purpose because n (actually n*) will be used as bifurcation parameter. 

Solving Eq. (5) yields for the (average) pressure: 

* 1 (J)h ,) 
p = - 3h3 n oe + 2h (6) 
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Assuming plain strain and Poisson's ratio not close to 0.5, the deforma­
tion of a thin elastic liner on a rigid backing can be approximated by: 

u = pd(1 + v)(1 - 2v) = E 
E(1-v) ,\ 

(7) 

(Armstrong, 1986 and Hlavacek and Vokoun, 1993), where d, E, v, and 
,\ are the liner thickness, Young's modulus, Poisson's ratio, and stiffness, 
respectively. Introducing the nondimensional bearing liner compliance B = 
6(LjD)2pJJoj(CjR)2'\C, this equation is rewritten into: 

u = Bp* (8) 

For a rigid bearing surface, B = o. 
The time derivative of the film thickness is found by rearranging Eq. (6): 

(9) 

Substituting Eq. (8) in (3), p* can be expressed as a function of h, Ex, and Ey , 

so with the previous equation, h' can be expressed as a function of h, 8hj80, 
Ex, and Ey . By space discretization in the O-direction to approximate 8hj80, 
a set of 1st order ODEs results for the discretized film thicknesses. Here, 
a 2nd order backward difference quotient is used to approximate 8hj80, 
discretizing with 50 mesh intervals, and using periodicity as the boundary 
condition. 

The bearing reaction force components in the x- and y-directions are 
found by integration of the pressure distribution: 

{ Fx = LR J psin() d() 
Fy = -LRJpcos()dO (10) 

Introducing the nondimensional force F* = (CjR)2Fj(LjD)2p,noLD, the 
previous equation is rewritten into: 

{ F; = 3 J p* sinOdO 
F; = -3 J p* cos 0 dO 

(11) 

where again p* can be expressed as a function of h, Ex, and Ey . The force 
components are included in the 2nd order equations of motion for Ex and 

As an approximate cavitation model, negative pressures are set equal 
to zero in the evaluation of the integrals in Eq. (11), while in Eq. (9), 
negative values of p* are allowed. This model introduces no discontinuities 
in the ODEs, and gives a good approximation of the full (discontinuous) 
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cavitation model, in which constraints are used to prevent the discretized 
film thicknesses from causing negative pressures. Simpson's Rule is used to 
approximate the integrals. 

The set of 1st order ODEs for the discretized film thicknesses is added 
to the 2nd order equations of motion of the rotor, to include the compliant 
short journal bearing in the model of the rotor-bearing system. The equa­
tions are coupled because of the fact that hi is a function of Ex and Ey , while 
E~ and E~ are functions of F; and FJ, respectively, which are functions of 
h. 

The nondimensional reaction force components in the x- and y-direc­
tions of a rigid-surface short journal bearing are given in appendix A. 

3. Symmetric Rigid Rotor 

Figure 2 shows a symmetric rigid rotor of mass m with unbalance a that is 
supported by two identical short journal bearings. A constant load Fo is 

p,C,L,D 
d,E,lJ,B 

Fo 

Figure 2. Symmetric rigid rotor 

applied in the plane of symmetry of the rotor in the negative y-direction. 
The equations of motion are given by: 

{ mex = 2Fx + mfl2a cos(flt) 
mey = 2Fy + mfl2a sin(flt) - Fo (12) 

Defining now flo by JFo/mC, this equation is rewritten into: 

{ 
E~ = 2F; / Fo + fl*2a* COS(fl*T) 
E~ = 2FJ / Fo + fl*2a* sin(fl*T) - 1 

(13) 

where a* = a/C. All calculations are done with Fo = 1. 

3.1. BALANCED ROTOR 

Figure 3 shows the bifurcation diagrams of the balanced rotor (a* = 0) for 
different values of B, where max lEy I is plotted against fl*. Stable and un-
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Figure 3. Bifurcation diagrams of balanced rotor 

stable solution branches are depicted by solid and dashed lines, respectively; 
bifurcations and cyclic folds by dots and circles, respectively. The station­
ary solution branches become unstable via 1st Hopf bifurcations, given in 
Table L It can be seen from this table that the value of 0*, at which the 

Balanced rotor Unbalanced rotor (a* = 0.2) 

n* n* 
B 1st Hopf cyclic fold flip cyclic fold 

0 2.74 2.61 2.87, 5.76 ~ 20 

0.1 2.71 2.50, 2.72 4.28, 5.96 6.87 

0.5 2.52 2.19 3.29, 4.13 3.72,4.14 

1 2.22 1.97 2.35,3.08 2.61, 3.09 

TABLE l. Bifurcation values 

1st Hopf bifurcation occurs, (the onset speed of instability) decreases for 
increasing bearing liner compliance. The periodic solution branches ema-
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nating from the 1st Hopf bifurcations bend to the left, and become stable· 
via cyclic folds, also given in Table 1. Therefore, stable periodic solutions 
with large values of max IEyl exist for f2* less than the onset speed of in­
stability. In contrast to the other values of B, for B = 0.1, the periodic 
solution branch starts stable and becomes unstable via a second cyclic fold. 

At the points indicated in Fig. 3 by crosses, the calculation of the pe­
riodic solution branches is stopped, because of negative film thicknesses. 
Increasing the number of mesh intervals in the O-direction to improve ac­
curacy will probably solve this problem, but this is not investigated here. 

3.2. UNBALANCED ROTOR 

Figure 4 shows the bifurcation diagrams of an unbalanced rotor with a* = 
0.2 for different values of B. The harmonic solution branches possess two 
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Figure 4. Bifurcation diagrams of unbalanced rotor (a* = 0.2) 

flip bifurcations, given in Table 1. It can be seen from this table that the 
value of f2*, at which the harmonic solution branch loses stability, first 
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increases and then decreases below the value for B = 0, for increasing 
bearing liner compliance. At the second flip bifurcations, the harmonic so­
lution branches stay unstable because one Floquet multiplier has a modulus 
greater than 1, while another multiplier crosses -1. The 1/2 subharmonic 
solution branches that emanate from these bifurcation are also unstable, 
and three unstable branches meet at these points. The cyclic folds in the 
1/2 subharmonic solution branches emanating from the flip bifurcations 
are also given in Table 1. For B = 0.5 and 1, the 1/2 subharmonic solution 
branches stay unstable at the second cyclic folds because, again, one Flo­
quet multiplier has a modulus greater than 1, while in these cases another 
multiplier crosses + 1. 

Again, at the points indicated by crosses, the calculations are stopped 
because of negative film thicknesses. For B = ° and f2* > 20, quasi-periodic 
behavior was found with max lEy I close to 1. For B > 0, film thicknesses 
become negative in the regions where no stable solutions are found, if the 
system is integrated numerically. 

4. Discussion and Conclusions 

A model of a compliant short journal bearing is presented with approximate 
elasticity and cavitation models. The results show that if the bearing liner 
compliance is increased, the onset speed of instability of the balanced rigid 
rotor decreases. The compliance also has a considerable influence on the 
1/2 subharmonic solution branch in case of unbalance excitation. 

At some points during the calculations, film thicknesses become nega­
tive. Increasing the number of mesh intervals in the circumferential direc­
tion will probably solve this problem, but this is not investigated here. 

In future research, an efficient continuation algorithm (see Lust and 
Roose, 1999) for PDEs (such as the Reynolds equation) will be used to 
save computation time. 
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A. Rigid-Surface Short Journal Bearing Force 

The nondimensional reaction force components in the x- and y-directions of 
a rigid-surface short journal bearing are found from the impedances given 
by Moes and Bosma (1981): 

{ F; = -vs(W; cos ( - W; sine) 
F; = -vs(W; sine + w; cos () 

where Vs = Jv;,x + V;,y, ( = arctan(vs,y/vs,x), 

{ vs,x = E~ + ~n*Ey 
_, lrl* 

Vs,y - Ey - 3pG Ex 

and 

(14) 

(15) 

(16) 

whereT = 2arctan{Jf=E2/h/l=rr-~)}/~, E = (1-E2)/(1-172), 

~ = Ecosa, 17 = Esina, a = {3 - (, and (3 = arctan(Ey/Ex). 
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1. Introduction 

Shape Memory Alloys (SMA) are successfully used in various fields of engineering. 
Recently they are receiving attention also for the realization of vibration reduction 
devices (Van Humbeeck, 1998, Clark et al., 1995). This interest is mainly due to 
the fact that SMA exhibit, under cyclic loading, a peculiar hysteretic behavior that 
makes it possible to avoid, or recover, the residual strains at unloading. Such a 
behavior is quite different with respect to most common metals since the strains 
associated to the hysteresis loops are not due to irreversible crystallographic alter­
ations, but rather, to the occurrence of thermoelastic phase transformations (Otsuka 
et al., 1986). The resulting mechanical behavior is highly nonlinear and, in addition, 
under dynamical loads, relevant temperature variations are observed. Such thermal 
effects strongly affect the hysteresis loop and often become a relevant constraint 
in the design of applications. Despite SMA are often used under dynamical loads, 
their nonlinear dynamics has been only little studied. Some of the proposed studies 
address the problem making use of isothermal models (Feng et al., 1996, Thomson et 
al., 1995), while others adopt more refined models but without discussing dynamical 
aspects (Oberaigner et al., 1995). 

In this paper the forced nonlinear oscillations of a single degree of freedom oscil­
lator with restoring force provided by a SMA device are studied taking into account 
the full thermomechanical behavior. The dynamics of the system turns out to be 
described by a four-dimensional differential equations system that is numerically 
solved to find the stationary solutions using an extended harmonic balance pro­
cedure. The dynamic characterization of the hysteretic system is then performed 
through the analysis of the frequency-response curves for different excitation am­
plitudes and different values of the material parameters. The comparison between 
isothermal and non-isothermal response highlights the influence of thermal aspects 
on the dynamics and the differences with respect to the classical hysteretic oscillators 
(Capecchi and Vestroni, 1990, Vestroni and Capecchi 1997). 
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2. Shape Memory Alloys behavior 

Most of the SMA applications are developed by taking advantage of the two effects 
of pseudoelasticity and shape memory (Van Humbeeck, 1998). 

Figure 1. Typical thermomechanical uniaxial response of a SMA element. 

The above two effects are due respectively to stress or thermally-induced marten­
sitic transformations between two solid phases called Martensite (M) and Austenite 
(A). In Figure 1 the path abcdefa corresponds to pseudoelastic behavior that is char­
acterized by the absence of residual strain at unloading. The path ilmnoi looks like 
a conventional plastic behavior but the residual strain can be recovered by heating 
the material, i.e. through the path opqa (shape memory effect). 

In this work, oscillators with pseudoelastic restoring force are considered. In such 
a case, the forward transformation (A ---+ M) takes place during loading, while the 
reverse transformation (M ---+ A) during unloading. 

Figure 2. Influence of the loading rate on the mechanical and thermal response. 

Under mechanical loads SMA show temperature variations increasing with the 
loading rate, so that, only in the limit case of very slow loads the material can be 
considered to behave isothermally as usually done in literature. When such tem­
perature variations take place, the material response deviates from the isothermal 
conditions as qualitatively shown in Figure 2. Further details on the loading rate 
effect, supported by experimental results, can be found in (Bernardini and Van 
Humbeeck, 1999). It therefore appears that, in the study of the SMA dynamic be­
havior, the hypothesis of isothermal conditions is inappropriate, since the loading 
rate influences both the hardening and the hysteresis loop shape that, in turn, are 
important factors in determining the dynamic response. 
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3. Model for the material behavior 

Several models exist to describe pseudoelasticity, see e.g. Huo and Muller, 1993. 
Here the interest is focused in capturing the non-isothermal behavior and the loading 
rate dependence of the mechanical response. To this end, a simple thermodynamic 
model where the phase transformation progress is taken into account by the evolution 
of the martensite fraction z is used to describe the force-displacement-temperature 
(1, x, J) response of a SMA element in an environment at constant temperature JA . 

In view of successive adimensionalizations, the tilde is used to denote dimensional 
quantities. The formulation of the model is only briefly outlined, while details can be 
found in (Bernardini, 1998). For t~e developmen!.. of t~e model it is useful to present 
it in a nondimensional form using fr = 0, xr = 0, {J = {Jr as reference state. While for 
elastoplastic systems, forces and displacements are usually normalized with respect 
to their values at yielding, in the present case the counterpart of yielding, that is the 
forward transformation start, is not a constant since it depends on the environment 
temperature. Forces and displacements are then normalized with respect to the 
val~es, denoted by the subscript M s, assumed at the f<E'ward transformation start 
at {Jr, while temperature is normalized with respect to {J A 

x 
x=~, 

xMs 

f f =-=--, 
fMs 

(1) 

The basic expression for the constitutive equation relating nondimensional restor­
ing force and displacement is derived in such a way to give a symmetric behavior 
with respect to x 

with), = _0 
XMs 

f = x - sign (xpz (2) 

where 0 is the maximum displacement due to phase transformation and XMs the 
value of the displacement at forward transformation start at reference temperature. 

The activation of the phase transformation in SMA is governed by the quantity 
II, called driving force 

II (x, {J, z) = Ixl + LJ (1 + {J - {Jr) - 1 + pz (3) 

the above expression depends on the following non dimensional quantities 
- -

P=p,_)., p,=2~, L=_D..T/o, J=_C{JA, {Jr=~r (4) 
Eo C DaMs {JA 

where E is the elastic modulus, D..1Jo is the entropy difference between the phases 
at the re~rence state, C is the specific heat, aMs the forward transformation start 
stress at {Jr' 

The activation of the phase transformations is assumed to take place when II 
reaches a threshold value determined from experiments 

II ;?: - B P z forward transformation 
II ::; BP (1 - z) reverse transformation (5) 
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where B is a further nondimensional material parameter governing the features of 
the subloops internal to the main hysteresis loop. 

The prescription of an evolution equation for the martensite fraction z is a purely 
phenomenological task and several expressions are available in literature. For the 
sake of simplicity, a simple linear expression relating the phase fraction rate to the 
displacement and temperature rates is used 

Z= >.+lH/1 [(sign(x))x+(LJ),9] (6) 

where H is a nondimensional material parameter governing the hardening features 
of the phase transformation. In particular if H = 0 then an ideal pseudoelastic 
behavior is obtained, while values of H > 1 give rise to hardening. 

Finally, equations (2) and (6) together with the activation conditions (5) for the 
driving force (3) furnish the complete set of thermomechanical constitutive equations 
of the SMA device. 

4. Outline of the model behavior 

In the following, the main features of the material behavior that can be reproduced 
by the model are presented. 

In isothermal conditions, for complete loading-unloading cycles, the hysteresis 
loop shape is regulated by the two parameters >., /1 governing respectively the 'length' 
of the pseudoelastic plateaus and the ratio between the forward and reverse trans­
formation forces, as shown in Figure 3. 

1.5 nn] ~:g5 I u".u ).;4 _-+:--I f-
0.5 ......., 8;1 , :: j ! I I:: 

, ).;5 

J-Vf--i:-It ---+-II. . 1'j/ -j .... , ......... , .. 

-1.5 

o 
i / -0.5 

-8 -6 -4 -2 0 2 4 

(a) 

8 

o 
0.5 

·1 

1.5 

il 

I 

........ :il---'--'--I-j.I'z(J!~t !.i, .... I, ..... , ........... , 
....... ~~0.51 .. ; ... J., ..... t ........ . 

i ~20.8 

-8 -8 -4 ~ 0 2 4 6 8 

(b) 

Figure 3. Hysteretic force-displacement loops for different values of>' (a), /1 (b) 

If the loading history involves sub cycles giving rise to incomplete phase transfor­
mations, then a feature typical of SMA is observed. Within the main outer hysteresis 
loop smaller, internal subloops take place. In this model the features of such subcy­
cles are regulated by the parameter B. In particular, when B = 0 the model reduces 
to the classical Muller's model where phase transformations always activate on the 
diagonal line of the outer loop (Huo and Muller, 1993), while values of B < 1 lead 
to different activation modalities for internal suhloops as it is qualitatively shown in 
Figure 4. 
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0.5 

o ~----~------~------~----~ 
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(a) (b) 

Figure 4. Hysteretic loops for B=O (a) and B=O.5 (b) 

When non-isothermal conditions are considered, two main differences arise in 
comparison with the previous cases: additional hardening and hysteresis loops shape 
modification. The influence of the thermal aspects is scaled by the parameter he 
which makes it possible to recover the two limit cases of isothermal (he -+ 00) and 
adiabatic (he = 0) conditions, while different values deliver intermediate conditions 
accounting for the loading rate dependence. The non-isothermal response is regu­
lated by the two parameters L, J that have a combined effect as shown in Figure 5, 
where also the isothermal behavior is plotted for comparison. The variation of L, J 
clearly influences also the response in terms of temperature as shown in Figure 5. 

G====:::=::;---:--'--""'1.3 
J=1.0 

o -JL-__ --'i=:so:=th.::;e:.::rm::::a::....1 ----;--------r--------1 

o 2 4 2 4 6 8 

Ca) Cb) 

o +--A~~~ ____ -+ ______ ~ ____ ----I 
o 5 10 15 20 o 5 10 15 20 

Co) Cd) 

Figure 5. Non-isothermal force-displacement (a,b) and temperature-time (c,d) curves for different L,J. 

5. Governing equations 

The SMA oscillator is a mechanical system where a mass m can undergo a dis­
placement x being counteract by a pseudoelastic restoring force 1 provided by a 
SMA device. The equations governing the dynamics of the system are given by 
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two balance equations. Differently with respect to purely mechanical oscillators 
here the temperature have to be introduced within the state vector and the energy 
conservation equation have to be added to the system. 

The equation of motion of the system under single harmonic excitation is given, 
in dimensional form, by 

_ mX + eX + f = Fcoswt _ (7) 
where f is the restoring force, c the damping coefficient and F, w the forcing ampli­
tude and frequency. The energy conservation equation in dimensional form is 

J + (Ii - ~1Jo;9) z = Q (8) 

where Q is the thermal energy exchange rate with the environment, whose expression 
needs to be specified by phenomenological considerations. The linear expression 

Q = he (;9 - ;9 A) is used here to model cOIlvective heat exchange. After introducing 

the following nondimensional quantities 

2 k ,. __ _ c_ 
Wo = -, T = wot, .. 

m 2wom' 

F 
F= -=-, 

IMs 
w 

a=­
Wo 

he = he 
wc 

(9) 

with k being the initial elastic stiffness, and using the nondimensional temperature 
defined in (1), then the nondimensional bala~e equations turn out to be 

x(T)+2(±(T)+f(x(T),19(T)) = FCOSQT 

~(T)+r(X(T),'!9(T)) = he'!9(T) (10) 

where the quantity r is 

c'!9A 
(11) 

The governing nondimensional equations can be written as a differential system in 
the state vector [x, v, 19, z] 

± v 

v -x + sign (x)Az - 2(v + F cos aT 
. sign (x) . LJ.o z- x- 11 

>.+HJL >'+HJL 
o (12) 

.0 LJ(l+19)+TI(x,'!9,z). 
11+ J z 

6. Harmonic balance solution 

Since the aim of the present work is the study of the stationary response, the solu­
tions of the differential equations system (12) are searched by means of an extended 
harmonic balance method. In order to apply the method, it is useful to start from 
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system (10) where f and r denote respectively the pseudoelastic restoring force and 
the heat associated to the phase transformation. Both these quantities are history­
dependent through their dependence on z. The stationary response, given by the 
pair of displacement and temperature functions, is approximated by a trigonometric 
series truncated after N terms 

N 

() ao ~ b. 
X T = 2 + ~ an cos naT + n sm naT 

n=l 

N 

{) (T) = Co + L Cn cos naT + dn sin naT 
2 

n=l 

In a similar way the history-dependent quantities are approximated as 
N 

f (x (T) , {) (T)) = ~o + L en cos naT + Sn sin naT 
n=l 

E N 

r (x (T) , {) (T)) = i + L En cos naT + Rn sin naT 
n=l 

(13) 

(14) 

by using the constitutive equations (2), (3), (6), (11) the coefficients en, Sn, En, Rn 
can be computed from the response coefficients an, bn , Cn, dn- Denoting Fn = F for 
n = 1 and Fn = 0 for n > 1, the substitution of (13) and (14) into (10) yields 

G N 

20 + L (en - n2a 2an + 2(nabn - Fn) cosnaT+ 
n=l 

+ (Sn - n 2a 2bn - 2(naan) sin naT 
N 

Eo - heCo ~ 
2 + ~ (En + nadn - heen) cos naT+ 

n=l 

o (15) 

The application of the Galerkin procedure delivers the following harmonic balance 
equations involving the coefficients of the series 

{ eo = 0 
Eo - heCo = 0 

{ 
en - Fn - n 2a 2an + 2(nabn = 0 
Sn - 2(naan - n 2a 2bn = 0 
En - heen + nadn = 0 
Rn - hedn - naCn = 0 n = 1, .. , N 

(16) 

Considering that the coefficients en, Sn, En, Rn of the approximation of the history­
dependent quantities depend on the coefficients an, bn, Cn, dn of the displacement 
and temperature response, the system (16) is a system of 4N + 2 nonlinear algebraic 
equations in the 4N + 2 unknowns coefficients of the (x, {)) approximation. 
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7. Frequency-response curves 

The main features of the stationary response of the SMA oscillator are discussed 
through the curves representing the maximum amplitudes of the displacement and 
temperature response versus forcing frequency at different forcing amplitudes and 
varying the parameters which govern the material behavior. 

It is useful to illustrate first the isothermal response for forcing amplitudes ranging 
from F = 0.1 to F = 0.4 and the influence of the parameter J.t that, as shown in 
Figure 3b, determines the area of the hysteresis loops in the force-displacement 
plane. Figure 6 compares the curves computed for different values of J.t going from 
J.t = 0.9 that corresponds to a wider loop to J.t = 0.3 corresponding to a narrower 
loop. 
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Figure 6. Isothermal frequency-response curves J.t = O.9(a), O.7(b), O.5(c), O.3(d) 

From the above figures it is seen that when J.t decreases, the maximum oscillation 
amplitudes increase considerably as a consequence of the reduction of the hysteresis 
loop area. Furthermore, jump phenomena with multiple coexisting solutions for the 
same frequency are present in all curves, as expected, considering the restoring force 
loop shape and the results obtained in (Capecchi and Vestroni, 1990). 

In order to highlight the effect of the thermomechanical interactions on the dy­
namic response, the frequency response curves corresponding to the cases depicted 
in Figure 6 have been computed in non-isothermal conditions J = 1.0, L = 1.0, he = 
0.01. In such a case two kind of curves are obtained, one relative to the maximum 
displacement amplitude (Figure 7) and another to the maximum temperature am­
plitude (Figure 8). 
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Figure 7. Non-isothermal frequency-response curves: J.L = O.9(a), O.7(b), O.5(c), O.3(d) 

From the comparison of Figures 6 and 7 it turns out that, at least in the selected 
parameter range, the response modification due to the thermal aspects induces a 
relevant modification of the dynamic response. Moreover, for the same value of J.L, 
the range of multiple solutions is notably reduced in non-isothermal conditions. This 
is related to the modifications of the loop shape. In particular the occurrence of the 
hardening produces a frequency increase with the oscillation amplitude that tends 
to destroy the jump phenomenon induced by the initial softening behavior. 
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Figure 8. Frequency-temperatures curves corresponding to Figure 7. 

2.5 

It is to note that the oscillation of the temperature takes place only when the 
stationary response goes beyond the elastic region and phase transformation is ac-
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tivated and, as expected, the temperature curves are multi valued in the same range 
as the displacement ones. 

8. Conclusions 

In this paper the nonlinear dynamic response of a SMA oscillator has been studied 
by means of a simple thermodynamic model that makes it possible to take into 
account the full thermomechanical behavior. The novelty of the work is related to 
the consideration of the influence of the non-isothermal response, typically observed 
in real alloys, on the dynamic behavior. A first numerical investigation, based on an 
extended harmonic balance procedure, has been carried out and results have been 
presented through the frequency-response curves. For a selected set of values of the 
parameters L, J, he governing the thermomechanical material behavior, it has been 
found that the dynamic response of the system shows some peculiar characteristics 
with respect to the traditional hysteretic systems, already studied in literature. 
Notable differences have been observed passing from isothermal to non isothermal 
conditions. Further studies are actually ongoing with the aim to investigate the 
behavior of the oscillator at higher force amplitudes, where a richer dynamic response 
is observed. 
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NONLINEAR WAVES IN A FLUID-FILLED PLANAR DUCT 
WITH A FLEXIBLE WALL 

J. WAVER 
Institut fur Technische Mechanik, Universitiit Karlsruhe, 
Kaiserstrafie 12, D-76128 Karlsruhe, Germany 

Abstract. As a generalization considering small fluid-structural vibrations, the present 
paper examines the finite magnitude oscillatory motion of a compressible fluid layer bound­
ed by two parallel walls where one of them is a flexibly supported membrane structure. 
The fluid is assumed to be inviscid and irrotational. A pertubation analysis is utilized to 
calculate not only the dynamic characteristics for small coupled oscillations but also the 
corrections due to the inherent nonlinearities of the vibroacoustic problem. 

1. Introduction 

Fluid-structural coupling is very important in many fields of engineering. For small 
oscillations where linear boundary value problems govern the vibrational behavior, 
several problems have been discussed during the last two decades in all details (see 
[1,3,4,7,8,10-12]' for example) starting with a short note by Weidenhammer [16]. 
As typical one- and two-dimensional examples, an elastically supported rigid plate 
vibrating in contact with a layer of fluid and an elastically suspended rigid cylinder 
in a surrounding circular fluid-filled duct with rigid walls were analyzed. 

The objective of the present contribution is to generalize these considerations 
to oscillations of finite magnitude so that a nonlinear description is required. Re­
calling a recent examination on finite vibrations of a flexibly supported rigid body 
immersed in an incompressible ideal liquid at rest by Seemann and Wauer [13], in 
the present contribution attention is focused to the corresponding problem of a fluid 
in contact with a structure which itself is flexible so that fluid-structural traveling 
waves appear. In detail, finite magnitude oscillatory motion of a compressible fluid 
in an infinitely long layer-shaped wave guide bounded by two walls are examined 
where one side is rigid and the other is flexible (in form of an elastic membrane on 
an elastic foundation). The fluid is assumed to be inviscid and irrotational and free 
transverse vibrations of the body are dealt with. The governing equations of mo­
tion are the fully nonlinear Euler equations together with the continuity equation, 
a state equation (here for an ideal isothermal gas), the (nonlinear) partial differen-

321 
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Figure 1: Channel with flexibly supported membrane wall 

tial equation for the vibrating membrane (obtained from the dynamic transition 
condition), and the kinematical transition and boundary conditions at the moving 
contact interface between fluid and body and the outside fluid border, respectively. 
To formulate the governing boundary problem in a more compact form, a scalar 
potential is introduced so that the number of variables can be reduced. 

To solve this boundary value problem, a perturbation analysis is performed 
which allows step by step evaluation. The first-order perturbation problem yields 
the results characterizing axially propagating fluid-structural waves in connection 
with small transverse coupled vibrations; from the second- and the third-order 
perturbation problem, the corrections due to the inherent nonlinearities can be 
found. 

2. Formulation 

For convenience, a planar problem is considered appropriately described in a Car­
tesian X, y coordinate system. The infinitely long fluid-filled channel is bounded by 
two parallel walls. One is rigid and the other is deformable as shown in Fig. 1. In 
detail, it is an elastic membrane structure of density PM and constant thickness 
B (stretched by a constant tension S) embedded on an elastic foundation with a 
hardening stiffness characteristic (stiffness constants per unit area (:1 and (:3). 

In the equilibrium state, there is a static deformation qo = const. of the mem­
brane in contact with the fluid layer of thickness H, pressure Po = const. and density 
Po = const. The coupled vibrations of the interacting system are characterized by 
the space- and time-dependent transverse oscillation q(x, i) of the membrane about 
its static displacement qO along the y-axis and the time and space-dependent un­
steady fluid velocities u( x, y, i), v( x, y,i) and corresponding pressure and density 
fields p(x, y, i) and p(x, y, i), respectively. The fluid is assumed to be an ideal gas 
with isothermal state change where 0,0 denotes the corresponding sound velocity. 
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The description of the moving interface is elementary: 

y = q(x, i). (1) 

The boundary condition at the rigid wall appears at y = H = const. 
The mathematical description for the fluid is based on the continuity equation 

apF ,apF ,PF ,(aUF aVF) 
ai + UFax + VF ay + PF ax + af) = 0, (2) 

(3) 

(4) 

In addition, a dynamic transition condition at the surface of the moving structure 
(force balance for the membrane) 

, a2qM a2qM , '3" , ' PMB-,--S-a'2 +COQM+C3QM+PF(X,y,t)I .. . =0, (5) at2 x y=qM-qo 

and kinematical boundary and transition conditions for the transverse velocity com­
ponent at the rigid wall and the contact interface between fluid and membrane, 
respectively, have to be formulated: 

, (' H ') 0 '(" ') _ aqM(x,i) '(" ,)aqM(x,t) VF x, ,t = , VF x, q, t - , + UF x, q, t a' . at x 
(6) 

It will be noticed that the variables containing both their steady and unsteady 
part are characterized by the subscript F (for the fluid) and M (for the structural 
member). The linear version for a one-degree-of-freedom structural subsystem (ela­
stically supported rigid plate performing a purely transverse motion) was discussed 
by Seemann and Wauer [12]. 

Assuming an irrotational fluid, we can rewrite the governing boundary value 
problem (2)-(6) can be rewritten in a more compact form by introducing the velocity 
potential: 

VF = grad ~F' (7) 

It can be shown (see [15], for example) that the continuity equation (2) and the 
Eulerian equations (3) can be replaced by 

[1 -:~ (at;) '] a;:: + [1- :~ (at;) '] a;;: _ :~ a~: 
2 [a~F a~F a2~F a¢F a2~F a¢F a2~Fl 

- 115 ax ay axay + ax aiax + ay aiay o (8) 
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and Bernoulli's law 

(9) 

The fluid field variables and the displacement of the membrane may be written 
as the sum of steady quantities and fluctuations: 

Po + p, PF = po + p, 
0+ u, VF = 0 + V, JF = 0 + J, qM = fIo + q. (10) 

The unsteady acoustic-structural vibrations are of special interest. For this purpose, 
substitute the assumed solutions (10) into the governing boundary value problem 
(8),(9),(4)-(6), take the (trivial) steady-state solutions into consideration and ob­
tain, after rescaling, 

0, 

and 
O4>(x,y,t)1 =0, 

oy y=l 

O4>(x,y,t)1 _ oq _ Oqo4>(X,y,t)1 = o. 
oy y=q ot ox ox y=q 

We have used the following non-dimensional variables and parameters: 

0,0 A X iJ q 
t H t , x= H' y= H' q= H' 

U v J P P 
u , v= - <P = A H' P = -;-, p=~ 

0,0 
A , 

ao ao Po aopo 

and 

(11 ) 

(12) 

(13) 

(14) 

(15) 

(16) 

,\2 _ c1H2 C3 H4 S 
0- BPMa6' '\3 = BPMa6' f3 = BPMa6' (17) 

Recall that the governing space coordinate iJ (i. e., y) is measured from the location 
fIo of the membrane surface in the steady state. 
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3. Evaluation and Results 

Following Kevorkian and Cole [6] or Nayfeh and Kelly [9], we assume the structural 
oscillation to be of the order of a small parameter c:, i. e., q(x, t) == c:ij(x, t). To take 
into consideration that the dynamic characteristics, in particular the eigenfrequen­
cies, will also be corrected by the nonlinearities, a new time variable 

T = Id (18) 

is introduced. Then, the vibration variables <p, p, p and ij, and also the circular fre­
quency 1'0" are expanded in powers of c:: 

where 

Eij(X, r) 

<p(x,y,r) 
p(x,y,r) 

p(x,y,r) 

c: [ql(X, r) + c:q2(X, r) + c: 2q3(X, r) + ... J ' 
C:<Pl (x, y, T) + c: 2 <P2 (x, y, r) + c:3 <P3( x, y, r) + ... , 
C:Pl(X, y, r) + c:2p2(X, y, r) + c: 3p3(X, y, r) + ... , 
C:Pl(x,y,r) + c:2p2(x,y,r) + c:3 p3(x,y,r) + ... , 
1'0,0 + C:Kl + c:2K2 + ... 

[ _()) ( ) f)j(x,y,r)1 _ jx,y=c:qX,T ,r =jx,O,r + f) c:q(X,T)+ ... 
Y y=o 

(19) 

(20) 

Substituting into the governing boundary value problem (11)-(15) and equating 
terms of equal powers of E, we obtain a set of perturbation problems of successive 
orders. There is a first-order problem 

0, 

0, 

0, (21) 

a second-order problem 
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fJ(/>2 I - 0 
fJy y=l - , 

a third-order problem 

and others of higher order not written down explicitly. 
To get a systematic solution procedure, it is appropriate to eliminate in a 

first step the q-variables. Differentiating the equations of motion of the membrane 
(21h,(22h and (23h with respect to time and using the kinematical transition con­
ditions (21)4,(22)4 and (23)4 at y = 0, we can derive modified transition conditions 
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in which only the 4>-variables appear: 

[ KO (P4>i _.t 83 4>i + A6 84>i _ O:KO 824>i] = II i = 1,2,3. (24) 
8y8t2 Ko 8y8x2 KO 8y 8r2 y=O t y=O' 

While for i = 1 this modified transition condition is homogeneous, i. e., II = 0, the 
other two are lengthy expressions in 4>1 and 4>1,4>2, respectively, not written down 
explicitly. 

Now it is straightforward to solve the condensed first-order problem (21 h ,(21 h 
and (24) (for i=l). For that purpose, assume a solution 

and substitute it into the mentioned boundary value problem. This yields 

<I>~ + (K~ - k2)<I>1 

<I>~ (1) = 0, (-K~ + A~ + ,8e)<I>~ (0) + O:K~<I>l (0) 

where (.)' = ~. Assuming a solution 

0, 

° 

(25) 

(26) 

(27) 

where ,2 = -"6 - P and applying the boundary conditions (26h,3 leads to the 
corresponding eigenvalue equation 

(28) 

determining the first-order eigenvalues KOn (n = 0,1,2, ... ,(0) to be solved nume­
rically. 

Fig. 2 shows these "eigenvalues" KOn of the vibroacoustic system versus modified 
non-dimensional stiffness ratio Ao for four selected wave numbers k = 0,0.5,2.5 and 
4.0 (here for ,8 = 0). The coupling parameter 0: may theoretically range over a wide 
interval from zero to infinity but is limited here to ° < 0: < 1 which characterizes 
the region of most practical interest. 

It is appropriate first to recall the case of a vanishing wave number k = ° which 
represents the case of an undeformable structure analyzed in detail by Seeemann 
and Wauer [12J. Since the frequency curves KOO and KOn (n = 1,2, ... ,(0) resulting 
from 0: --+ ° cross, there is a significant coupling of the acoustic and the structural 
modes in the regions of frequency coincidence, depending on the magnitude of the 
ratio 0:. Instead of curve crossing there is a curve "veering" between acoustic and 
structural branches of solutions of the characteristic equation (26). In the regions 
of curve veering one cannot speak about the structural and the acoustic modes 
separately. If the parameter 0: is small, then outside these regions the solutions "-On 

of the characteristic equation (26) are very close to the solutions KOn for a system 
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"On 8 

Figure 2: Eigenvalues of the fluid flow­
membrane system versus stiffness ratio 
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without coupling (a = 0) and one can speak about the eigenvalues of the acoustic 
modes and of the structural mode. It will be remarked that for an incompressible 
fluid in the case k = 0 no interaction problem exists because then, no motion of the 
coupled substructures is possible. 

Originating from this, also the cases of finite wave numbers k > 0 can be under­
stood (see Simon [14]). In ranges of the KOn , Ao-plane where K~n > k2 , qualitatively 
the graph remains unchanged. There are coupled transverse vibrations, and due 
to the finite wave number k > 0, they are combined with travelling waves in the 
axial x-direction of the channel. But in ranges where P > K~n' there remains only 
one transverse vibration which, essentially, is a structural mode travelling along the 
wave guide in the x-direction. All the "acoustical" modes vanish, which means that 
the corresponding transverse vibrations (standing waves) change into exponentially 
decreasing waves in the transverse direction whithout reflexions at the rigid wall. It 
will be noticed here that the case of an incompressible fluid beneath a massless stiff 
plate was studied in [5]. 

Returning the boundary condition (26)z, for instance, we can finally dermine the 
amplitude ratio Ani Bn. The eigenfunctions <I>ln(Y) may be normalized 
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!Sa 
K02 -0,5 

-1 

-2 

-2.5 

-0.5 
~ 
K03 

-1 

-1.5 

-2 

-2.5 

-3 

-3.5 

a = 0.5 

a = 0.1 

, , , , 

, , , , , , , , 
" 

329 

Ao 

-40L--~-~----:---:---'C;::O-----;"2 

Ao 

In the next step, the inhomogeneous second- and third-order perturbation pro­
blems (22h,(22)d24) (for i = 2) and (23)d23h,(24) (for i = 3), respectively, have 
to be solved. The homogenous parts of the field equation and the boundary conditi­
ons are identical to those of the corresponding first-order boundary value problem. 
It follows that the eigenvalue problems and also the eigenfunctions are the same. 
Therefore, a modal expansion technique can be applied using the eigenfunctions 
«I>1n(Y). To establish this approach in its classical form, it is appropriate to trans­
form the boundary value problems to ones in which the inhomogenous transition 
condition turns into a homogeneous one. Introducing Dirac's delta function b(y) we 
can do this, and obtain after same calculation, a representation 

Fi + 15(0)1;, 

BcjJi I - 0 
By y=1 - , 

0, 

2,3. (29) 
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Figure 4: Eigenvalues versus stiffness ratio and Mach number 

posessing the desired properties. For convenience, the computation is limited to the 
case k == 0: The x-dependency vanishes but, nevertheless, the full variety of coupled 
transverse vibrations appears. 

Evaluating the second-order problem (29) with i = 2, the remaining solutions 
¢In(Y, T) lead to an excitation GIn sin r+ DIn sin 2r where GIn = KlnG;n with G;n free 
of KIn. Thus the eigenvalue correction KIn must vanish for every n = 0,1,2, ... ,00 
to avoid secular terms. The evaluation of the third-order-problem (29) with i = 2 is 
similar but significantly more time-consuming. In this case, there is a non-vanishing 
correction K2n (n = 0,1,2, ... ,00) (see Simon [14]) which is shown in Fig. 3 as ~ 

"On 

versus Ao, here for A3 = 0 and n = 1,2,3. For a linear foundation (so that only the 
non-linearities of the fluid become effective) the corrections are negative, i. e., the 
eigenvalues decrease with increasing vibrational magnitudes of the flexible wall. For 
A3 > 0, i. e., a hardening foundation, this effect can be compensated and for larger 
Arvalues, the correction may be positive. 

For an incompressible fluid, some simplifications appear because the density of 
the fluid is constant (so that the continuity equation reduces drastically) and there 
is no additional state equation. An incompressible water layer beneath a massless 
stiff plate was studied in [5). 

4. Extending Remarks 

It is straightforward to include an axial stationary flow velocity. '!La = const. Within 
the dimensionless formulation, there is the so- called Mach number M = QQ. as an 

aD 

additional parameter and in particular, the first-order eigenvalue problem can be 
evaluated without difficulties. In Fig. 4, the first two eigenvalues KOI and K02 are 
shown versus Ao and M for a axial wave number k = 0.5. It can be seen that they de­
crease with increasing Mach number and for larger Mach numbers, they can vanish, 
i.e., there may be an instability. An interesting aspect is the effect of an external 
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excitation so that forced vibrations of the considered multifield problem occur. For 
a cylinder-fluid problem (where an incompressible inviscid liquid is assumed) the 
essentials are addressed by Seemann and Wauer [13] but for a compressible fluid 
(if two subsystems both able to vibrate are coupled), a corresponding calculation 
has not been performed yet. The related problem for an unbounded fluid region has 
been exhaustively discussed by Ginsberg [2] and Nayfeh and Kelly [9]. The most 
interesting features for that case are distortion effects in the fluid arising from the 
non-linear wave propagation there. At a sufficiently far distance from the excited 
structural member, a formation of shock waves will appear and for large values of 
H (for the channel) and Ro - Ri (for the annulus) such phenomena might occur also 
for a bounded fluid region. 

4. Conclusions 

We investigate the finite-magnitude oscillatory motion of a compressible fluid layer 
bounded by two parallel walls, one of which is a flexibly supported membrane struc­
ture. The fluid is assumed to be inviscid and irrotational. A pertubation analysis has 
been used to calculate not only the dynamic characteristics for small coupled oscilla­
tions but also the corrections due to the inherent nonlinearities of the vibroacoustic 
problem. 

The results for the eigenvalues demonstrate that there is only a correction of hig­
her order but for a linear foundation there is a softening behavior and this correction 
is negative, i.e., the eigenvalues decrease with increasing vibrational amplitudes. The 
absolute values of the corrections are the largest for KOn ~ K~n and are also influ­
enced by the coupling parameter a. 
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