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PREFACE

This volume contains selected papers presented at the Symposium on ''Recent
Developments in Non-linear Oscillations of Mechanical Systems", held in Hanoi,
Vietnam, from 2 - 5 March 1999. This Symposium was initiated and sponsored by the
International Union of Theoretical and Applied Mechanics (IUTAM) and organised in
conjunction with Vietnam National University, Hanoi. The purpose of the Symposium
was to bring together scientists active in different fields of oscillations with the aim to
review the recent progress in theory of oscillations and engineering applications and
to outline the prospects in its further achievements to then co-ordinate and direct
research in this field to further co-operation between scientists and various scientific
institutions.

An International Scientific Committee was appointed by the Bureau of IUTAM with
the following members:

Nguyen Van Dao (Vietnam, Co-Chairman)
E.J. Kreuzer (Germany, Co-Chairman)
D.H. van Campen (The Netherlands)

F.L. Chernousko (Russia)

A.H. Nayfeh (U.S.A)

Nguyen Xuan Hung (Vietnam)

W.O. Schiehlen (Germany)

J.M.T. Thompson (U.K)

Y. Ueda (Japan).

This Committee selected the participants to be invited and the papers to be presented
at the Symposium. As a result of this procedure, 52 active scientists from 16 countries
responded to the invitation, and 42 papers were presented in lecture and poster
discussion sessions.

The scientific presentations were devoted to the following topics :

1. Non-linear Oscillations of beams, plates, vehicles and other dynamic systems;
2. Analysis and Control of Non-linear Systems;

3. Non-linear waves;

4. Dynamics of Offshore structures;

5. System Identification;

6. Mathematical and Numerical methods for investigating non-linear systems.

The papers of this volume are arranged in alphabetical order with respect to the family
name of the first author.

The presentations and discussions, including the round table discussion, during the
Symposium will certainly stimulate further theoretical and applied investigations in
non-linear oscillations. The publication of the proceedings will promote this
development.

The success of the Symposium would not have been possible without the excellent
work of the Local Organising Committee. Members of that Committee were Do Sanh

ix



(Chairman), Phan Nguyen Di, Nguyen Van Khang, Tran Quang Khoi, Nguyen Cao
Menh, Dinh Van Phong, Nguyen Thi Trung and Vu Ngoc Tu. The secretarial work for
both the Conference and this volume has been admirably undertaken by Mrs. Nguyen
Thi Hong Hanh.

We are sincerely grateful to Prof. Werner Schiehlen, President of IUTAM for his
encouragement to the success of this [IUTAM Symposium and to Vietnam National
University, Hanoi, the host of this significant scientific event.

The editors wish to thank the participants of this [UTAM Symposium, especially the
authors of the papers, and all organisers for their enthusiastic and valuable
contributions to the Symposium.

Sincere thanks are also due to Prof. Graham Gladwell, and Kluwer Academic
Publishers for their help and co-operation.

We gratefully acknowledge financial support from [UTAM and the Vietnam Council
for Natural Science.

Nguyen Van Dao E.J. Kreuzer




STABILITY IMPROVEMENT OF THE IMPACT DYNAMICAL
SYSTEMS - ANALYTICAL AND NUMERICAL METHODS

J. AWREJCEWICZ and K. TOMCZAK

Division of Automatics and Biomechanics
Technical University of £.6dz

1/15 Stefanowskiego St., 90-924 L6dz, POLAND

1. Introduction

Vibro-impact vibration problems with one-degree-of-freedom systems
have a long history in mechanics. The problems like stationary
subharmonic motions and their stability, the influence of damping and
friction on vibro-impact dynamics, elastic and plastic type impacts, time
histories and phase portraits of the vibro-impact systems have been
considered [1-7].

In this work we propose an analytical approach to determine suitable
delay loop coefficients to realise the required vibro-impact periodic
dynamics for a non-resonance case. The obtained analytical formulas
allow for a proper choice of the delay loop coefficients in order to achieve
the required vibro-impact periodic motion quicker then in the case
without a loop. When the vibro-impact periodic motion is achieved the
delay loop is automatically switched off.

2. The analysed system

A feedback control with the delay loop is used in order to improve a
stability of a vibro-impact periodic motion. It possesses the following
properties:

~simple-construction(a-feedback loop with delay elements);
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— simple mathematical description;

— the only one information required about an object being analysed is
a period of oscillations (besides, an object can be treated as a
black box”).

The analysed system with the kinematic excitation is presented in

Figure 1. The system dynamics (including a delay loop) is governed by the
equation:

i+ct+a’x=Pycosat +S[x(t) - x(t - D]+ Q) -2t -T)]  for x<s, (1)

X, =x_, X =-Rx for x=s,

where: c=c¢ /m, a2=(k1+k2)/m, Py =kyy,[/m, S=k,p/m, Q=k,q/m and
T=2nk/w 1s the period of a stabilised periodic orbit, R denotes the

restitution coefficient, and s is the constraint. The natural number £
defines the number of excitation periods occurring during one impact. The

indeces ”+” and " define positions and velocities of the body just after
and before an impact, correspondingly.
(@)
X Yyocos(wt+)

77777777 ///,//
S

-«

(b)
yocos( at+ @) y x
mJ'c'+cly'c+(k1 +k2)x=k2y >
Vs Memory [

storage |- f_[x |
r 4

. = p{x(t) —x(t - T)] +
+ q[fc(t) -x(t- T)] -

Fig. 1 - One-degree-of-freedom vibro-impact system kinematically excited
(2) and the control diagram (b).



It is assumed (Figure 1) that the stabilised periodic orbit
xo(f) = xo(t - T) has the period of the excitation the same as in the system

without that loop and that x,(f) is the particular solution for the system
with and without the delay loop [8-10]. The delay loop starts to operate
when the disturbances occur and is going to act on the dynamics in order
to achieve the vibro-impact periodic motion quicker than in the case
without a loop.

3. Control far from the resonance

In order to find the analytical solution to equation (1) the approximate
analytical method has been applied assuming that:

— the difference x(t)- x(t - T) is small;

— the damping ¢ is of the same order as the introduced formally
perturbation parameter ¢ .

In order to find the complete solution of the equation (1) in the far
from the resonance motion the Krylov-Bogoliubov-Mitropolskij method
(KBM) was applied.

A new variable ”z” is introduced to the equation (1), defined as:

x=z+ 2P° —-Cosat . 2)
a’-w

We get:

i+a’x=¢f(a,ny), 3)

where:

E F
(a,ny)= aS'[z+ = _sz cosot —z(t - T) - = _sz cosa(t - T)}+

+ le:[l— 5)(2'_ afg“; : sma,t] ~H{t-T)+ af b sinot- T)],

n=ot, v=aot.

Using the KBM method we have truncated the ¢ series up to the order
O(¢) and we have obtained:

zZ(t)y=a()cosy (1), 4



where:
da _ ﬂsjnaT-{Lf-(Q—c)a —E—Qa—cosaT,
dt 2a 2 2 (5)
d_'/'= a-£+£cosaT+£sinaT
dt 2aa 2a 2

For § =0 =0 we get the uncontrolled solution, which testifies the
validity of our approach.
After integration of equations (5) one obtains:

a()=Coe”,  w(t)=ast+6,
1 .
V= E{SsmaT—a[c— Q(l—cosaT)]}, (6)

Y

ay=a- i(1— cosal)+=sinal.
2a 2

Therefore, we analyse the following equivalent solution (for vibro-impact
motion):

F
x(t) = =" cos(wt + 6) +¢”* (C cosayt + Dsinaot) for x<s, @)
a’ -
X, =x_, X, =-Rx_ for x=s,

where:

C=Cycos8,, D=-C,sinb,, C,=vyC2+D?,

and the values of the parameters C, D and 6 are defined according to the
formulas obtained for the system without a delay loop [6].

In order to investigate the stability we use the following approach [6].
If we perturb the periodic solution (12) with a small value &, this

perturbance will cause the change of the parameters C and D and the
phase shift @ with the value of &C,, éD, and &6,, correspondingly. The
perturbed solution will be then:

x+ & = eV‘[(C+6C,)cosa0t, +(D+bD,)sina0t,]+acos(wt, +6+66,), ®)

where: a = Po/(a2 —wz).



In the above formula the time # is measured beginning from the /-th
impact, and the change of the constants C and D were taken into account.
The impact /+1 will occur in the time moment ¢,,, = 24/w + &T;, Where 6T,

denotes the period change 7. Taking into account the fact that ¢ concerns
also the unperturbed equation, then ¢, =r+&,, where &, =0for the /-th

impact, and &, =87 for the (/+1)-th impact.
After a few transformations we get:

&, =" [(ac, +ay DSty +VCat;)cosayt +(5D; - ayCot, + VD&,)sinﬂt] +
—a(wdt, +56)sin(ot +6).

©)

Introducing the following boundary conditions for /-th and (/+1)-th
impact:

L t=0, & =0, & =0, & =05, (10)

2k
4L t=—4+ 8 =2B+8, &y =0T, & =0, & =&, ,

we receive six equations.

1
Since 56, = 8, + 2, wdT;, we finally get the following three equations:
i=0
&, -adg sin =0,
1
ezﬂV{&} cos2 foy, + D, sin 2 S, + P (56}+1 - 5@)[(00D +VC) cos2 fa, +
(VD - aC) sin2faq | -G, = 0,
v {(aocsD, +V8G;) cos2 A - (a,8C, V8D, ) sin2 62 + (11)
1
+= (8., - 5@)[(2V%D+ c(rﬂ - ag)] cos2fay +
+(—2Va0C+D(V2 —ag)) sin2ﬂa0]}+V&Z‘ +ao0D),; — (R+1)6 6=0
141 T GOl 4,100 cosd =0.

The solutions are sought in the following form:
5C,=a171, D, 2027’1’ 5‘91=0371, (12)

where yis-a constantsAfterssubstituting (12) to (11) we get the following



characteristic equation:

b,y? +by +b, =0, (13)

where:
b, = o, {a sin6- %e‘w” [(@oD+7C)cos28a, +(#D - ayC)sin2 ﬂl]},

b, =e* {asma[(R — ey cos2 e +(R+ 1)V sin2 fa ]— (R +Dawcosfsin2 fay, +

(14)

+%a0[(VC+a0D)(cos2ﬂao —RezﬂV)+(VD+aOC)sin2ﬂao]},

1
b, = Rat, e“ﬂV[;(aoD + VC) -a sinﬁ}.

The problem of the investigation of this equation stability is reduced to
the analysis of the roots of the second power equation (13). If these roots
fulfil the following inequality:

|71,2|<1: (15)

then, in accordance with the expressions (12), the solutions 6C;, D; and
06, approach zero at / - +w0, and the solution will be called asymptotically

stable. The above inequality is equivalent with the placement of the roots
inside the unit circle of the complex plane.

4. Simulation results

The simulation model of a one-degree-of-freedom system and the control
of the system is constructed with a use of the MATLAB-Simulink
package.

The following system parameters were adopted for the simulation:
m=2kg, ¢ =001Ns/m, k=7N/m, k,=1N/m, wo/a=22, y,=15m,
R=065, and s=0.001m .

The analytical method presented in the previous section has been used
to detect the delay loop coefficients. Figure 2 presents moduli of the roots
of algebraic.equation. (13).versus.the delay loop coefficients p and g (for



the considered parameters, the |y,,| roots are complex conjugate

numbers). The p and g parameters have been taken from the interval (-0.5,
0.5).

In order to check the analytical predictions, p.=0and g=-0.4Ns/m have
been assumed and then the simulation results have been compared with
the case when p =¢q=0.

For these parameters the delay loop control coefficients p and g allow
us to obtain quicker damping of oscillations in the solution (7) than
without control. Additionally, for the given parameters we have found
from equation (13) that ly1,2| are lying closer to the origin for the system

with the control coefficients than without control (with the delay loop
12| = 0.539, whereas without the loop |y, ,|= 0.648).

Qv T T T

e

. 771 1

a3l R o7 Q\QMBL
I :\0.74313;

I A S

02k .71438\0
—- S

a1l L= N

0658

s d Z\o.sseez\
- o628

1l 12\"-628’2\

2] O — o5 |

a3 OST06—— 057051 |

Q4 OAB— 054188 |

Q4

45 04 43 42 1 0 01 02 03 Q4 Q5
p
Fig. 2 - The moduli of |y, ,| versus the delay loop coefficients p and g.

Figure 3 presents the simulation results in the form of phase planes and
the transients of the difference x(f)-x(t-T). To compare these transients

an additional pu parameter has been adopted. That parameter defines the



time interval where the signal |x(¢f) - x(t - T)| < .. (during the simulation p =
10°, has been used).

It can be seen in Figure 3 that with control the transients vanish
quicker than in the case without control. In the case presented above the
periodic orbit is achieved after about 17.3 seconds for the system analysed
without the delay loop and after 14.9 seconds for the system analysed
with the delay loop (1 = 107), respectively.

(a)

— 08 : -

2 x(t) - K(t-T) 06

x10°

| 04

02

ol X
0

IRVA N

0.6

10 15 20 t ps] 04 03 0.2 01 0

(b)

10
X . 08

2 K A x(t) - x(t-T) o6}
04}
1

02
x

[0]3

0.2t

04t
2

0.6

10 15 20 t 25 04 0.3 02 01 4, 0

Fig. 3 - Difference between two transients x(¢)-x(#-7) and phase plane
approaching periodic orbit for the system: (a) without control (p =0, g =
0) and (b) with control (p =0, g =-0.4).



5. Conclusions

In this paper we have presented an analytical approach to estimate the
delay control coefficients for efficient stabilisation or destabilisation of the
periodic orbit under consideration. Although the efficiency of the method
is presented for k¥ = 1 (periodic orbit with the same period as the
excitation period) but our considerations are also valid for subharmonics
(for arbitrarily taken £ > 1). The validity of our analytical approach has
been testified by numerical simulations.

To date, in the literature available to the authors, in order to achieve
the mentioned objective, the feedback loop coefficients have been adopted
in a random way, using the numerical observation. In this paper this
problem was solved analytically.
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THEORETICAL AND EXPERIMENTAL EVIDENCE OF SYMMETRIC
RESPONSE INSTABILITY IN THE FINITE, PLANAR DYNAMICS OF A
CIRCULAR ARCH

F. BENEDETTINI
Dipartimento di Ingegneria delle Strutture, Acque e Terreno, Universita'
dell'Aquila, Monteluco Roio, 67040 L'Aquila, Italy

1. Introduction

The role of experimental tests as a necessary step in the analysis and the design of
slender structures undergoing large displacements is assessed in this paper. In particular,
the finite, forced dynamics of elastic structures having initial curvature show a series of
interesting phenomena due to the presence of both symmetric and non symmetric
nonlinearities. In the case of a circular arch excited by an harmonic vertical load applied
on the tip and having the dynamics confined to the plane of initial configuration, the
simple unimodal symmetric solution, stable for low excitation levels, loses stability
around meaningful resonance conditions, and coupled symmetric anti-symmetric
solutions appear. The nonlinear modal coupling is furthermore strengthened by possible
internal resonance conditions depending on elasto-geometrical structural parameters
and/or on the location of possibly applied concentrated masses.

The problem already known for a long time (Bolotin [1]) has been recently revisited in
the case of non shallow (Thomsen [2], Benedettini [3]) and shallow (Win-Min Tien et
al. [4]) arches. In the cited papers, planar models of arches are analyzed with the
objective of describing the overall dynamics and the bifurcation scenarios leading
eventually to non regular motions occurring in some areas of the frequency-amplitude
excitation parameter plane. Concerning the case of non shallow arches, the analytical
model obtained by Thomsen [2], contains a mixed continuous-discrete formulation: the
symmetric oscillations are, in fact, modeled as a discrete degree of freedom
parametrically forcing the antisymmetric vibrations, modeled, on the contrary, with a
correct continuum mechanics approach. In ref. [3], after revisiting the analytical results
obtained in [2] and discussing a minor improvement proposed by Lakrad et al. [5], an
analysis of the results obtained by using a first companion experimental model was
done. In this work, after discussing the results obtained with systematic tests on a new
experimental model, a new planar analytical model obtained with a monodimensional
nonlinear elastic approach is considered (Sheinman [6], Alwar and Narasimhan [7]). To
realize an arch having an actually planar dynamics, a cross section of the arch having an
out of plane moment of inertia well above the planar one, has been considered (out of
plane frequencies well above the planar ones). Within the aforementioned hypothesis
and owing the assumption of non-shallow arch, the dynamic deformation is practically

1
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inextensional and free of shear effects. Coherently the new analytical model taking into
account the nonlinear change in curvature, the tangential inertia forces and disregarding
axial (Nayfeh and Raouf [8,9]) and shear deformations is derived by using the extended
Hamilton’s principle. The pde’s of the motion are then discretized by using a two-mode
Galerkin approximation validated by experimental tests. The Karhunen-Loeve
decomposition [10] was applied on experimental time-series contemporaneously
acquired on eight different positions on the arch. During both periodic and non-periodic
evolutions, the spatial shape of the system remains close to the eigenfunctions of the
first two, symmetric and anti-symmetric modes, justifying in such a way the strong
reduction adopted in the Galerkin discretization. The analytical model obtained with the
preceding assumptions appears therefore correct to describe both the regular and non-
regular dynamics of the arch. The experimental and analytical models were analyzed
around the primary external resonance condition of the symmetric mode in the case of a
nearly 2:1 internal resonance condition between the directly excited and the anti-
symmetric mode. The nonlinear modal coupling produces an instability of the simple
symmetric solution and the extension and the nature of this instability zone are analyzed
in detail for the given detuning. When the unimodal solution loses stability, two-mode
periodic, quasi-periodic and chaotic motions have been observed. Each solution belongs
to a sub-region of the main instability region: furthermore, entering the region from its
boundary the complexity of the motion increases. The extention and shape of such sub-
areas depending on the internal detuning have been observed and sample time histories
representative of the class of responses have been analyzed. Classical global complexity
indicators like the maximum Lyapunov exponent and the correlation dimension have
been used to quantify the chaoticity of the system and the possible fractal nature of
underlying attractors. In the case of experimental tests the preceding analysis has been
conducted on the basis of the delay map technique [11, 12, 13]. Furthermore the spatial
complexity observed during the strong chaotic evolutions has been unfolded with the
aid of the Karhunen-Loeve decomposition.

2. Preliminary analytical and experimental models

The analytical model proposed by Thomsen [2] is based on the following assumption:

e the tangential inertia forces are neglected,

e the shear and axial deformations are neglected,

o the mass of the arch is concentrated on its crown.

With the preceding assumption and using a mixed continuous-discrete formulation, the
following ode s of the motion were derived; in this case, a=0 and the egs. read:

f+2ﬂf+(1—ma)2u)f+a~[—ma)z£f3]=0
8 ()

a'+2ﬂwu+w2u+x(fj+f'2)+a-[+w2%-ﬂ]:(q/m)cos(nr)
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In egs. (1), with the symbology present in [2], f and u are respectively the anti-
symmetric and symmetric amplitudes, £ denotes the damping coefficient, m and x are
the coefficients of non-linearities depending on the mass and the opening angle of the
arch, o is the ratio between the symmetric and anti-symmetric natural frequencies and,
eventually, ¢ and (2 express the non-dimensional amplitude and frequency of a
concentrated vertical force at the tip of the arch. A minor improvement of the model
(suggested in [2] and proposed in [S]) is obtained taking into account the 2™ order
vertical displacement of the tip of the arch due to anti-symmetric vibrations; accordingly
egs. (1) are modified by the presence of the terms in brackets (a=1).

With the aim of comparing and validating the previous models, a double hinged, steel
circular arch having a radius R=90 cm, a cross sectional area A= 3 x 0.4 cm’ and an
opening angle 2¢ ,=160° was constructed in the Nonlinear Dynamics Lab of University
of L'Aquila. The choice of the cross section was done with the aim of confining the
dynamics practically in the plane of initial configuration. In Figure 1 the analytical and
the experimental models are shown.

Figure 1—The analytical and experimental models

Interesting  similitudes were discussed in [3] both for the regular and non regular
dynamics. The corresponding analytical and experimental behavior charts explaining,
the bifurcation phenomenon are reported in Figure 2.
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Figure 2 -- Analytical (solid line a=0, dashed line a=1) and experimental behavior charts
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A small dynamic exciter to be applied on the tip of the arch was then
constructed: it mainly consists of two opposite counter-rotating non balanced masses
mounted on two coupled cog-wheels moved by a circular thin shaft transmitting a
couple and driven by a step controlled, asynchronous, electrical engine.
The two models, synchronized in a 2:1 internal resonance condition by applying on the
tip of the arch a concentrated mass, furnish a qualitatively correct prediction of the
symmetric response instability by evidencing the occurrence of strong subharmonic
antisymmetric vibrations in a large frequency-range even at low excitation amplitudes.
In the analytical chart shown in Figure 2 (left), several zones are observable: in the A-
zone the unimodal symmetric solution is the only stable solution; the B-zone, is the
region of stability of the coupled, periodic, symm.-anti-symm. solution; the D-zone is
the region where the two kind of solution belonging to the previous classes are both
stable and coexisting and, eventually, in the C-zone, no periodic solutions are stable,
and, after Hopf bifurcations, quasi-periodic solutions arise, leading eventually, to
chaotic motions. In Figure 2 (right), the same region for the experimental model is
reported. The shape of the plot qualitatively agrees with the preceding one: within the
main instability region an inner core and two sub-regions are present: the latter are
zones of stability of the coupled periodic motion, while the former, coherently with the
analytical prediction, is the zone of non-periodic, complex motions.

Even if the analyzed models give comparable results, four main points could be

observed.

Concerning the analytical model (proposed in [2] and [5]):

e in the case of an high opening angle (160° in the considered case) the tangential
inertia forces cannot be disregarded owing also the presence of a concentrated mass
at the tip of the arch subjected, in the case of coupled solution, to an high anti-
symmetric (tangential) displacement component,

e the distributed mass of the arch is of the same order of magnitude of the dead load
applied to the crown and to concentrate it could produce imperfect results.

Concerning the experimental model (proposed in [3]):

o the behavior chart, even qualitatively in agreement with the analytical one, shows a
quite bigger region of dynamic instability occupying the whole range of analyzed
frequencies, circumstance probably related to the model imperfections and to the
driving shaft transmitting extra-actions to the model,

e during the observed complex (QP and chaotic) evolutions no measures where done
on the spatial coherence of the measured displacements, circumstance not a priori
justifying the proposed truncation on the companion analytical model.

To go over the preceding points a new experimental rig (model, dynamic exciter and

driving shaft) and a new analytical models are proposed and analyzed in the following.
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3. New experimental set-up

A new experimental model with same characteristics of the preliminary one, improved
in the assembling of the pin-end constraints, was realized with the aim of verifying the
possible accuracy of a reduced analytical two degree-of-freedom model even during non
regular regimes observed in a large area of the forcing-frequency excitation control
parameter plane. A parallel improvement in the assembling of the dynamic exciter was
realized as well by reducing an asymmetry present in the first exciter and constructing a
new shaft, linking, with a double cardan-joint, the exciter to the step-controlled engine
and able to transmit, in the limit of a real mounting, only the required couple. The new
experimental set-up, because of the cited improvements, gave more reliable results
permitting to draw some useful observations that oriented the derivation of a new
analytical model described in paragraph 3.

The observed motions, cleaner in each test than those exhibited by the first model, again
indicated a large area in which coupled symmetric-anti-symmetric motions arise with
strong anti-symmetric components accompanying the directly driven symmetric ones. In
the coupled case the mean amplitude of the motion considerably increase indicating the
need to understand and possibly control the relevant bifurcation between the two
different, somewhere coexisting, solutions. Figure 3 (left and middle) has been obtained
by using a strobo-flash camera, and they permit to estimate the amplitudes of the motion
during the dynamic evolution. In particular the two pictures were taken in a coexistence
zone i.e. when at the same values of excitation parameters, both unimodal-symmetric
(left) and coupled (middle) solutions are competing in function of i.c..

Figure 3 — New exp. setup: symm. motion (left), anti-symm. motion (center) and the exciter (right)

From the picture in the middle, keeping in mind the observation on the necessity to
include the tangential inertia forces in the analytical modeling, is also easy to estimate
the order of magnitude of the horizontal component of the tip motion. In Figure 3 (right)
the exciter with the shaft and the cardan-joint is shown as well.

The first step of the experimental analysis was to realize a nearly 2:1 internal resonance
condition between the frequencies of the first symmetric and anti-symmetric modes by
adding an extra mass on the tip of the arch (Figure 3 right). An identification of a mass
value of 2.211 Kg (set-up A) gave experimental frequencies very close to the analytical
ones obtained with the new model described in the following. In Table 1 these
frequencies are reported (first and second columns) together with those evaluated with a
f.e. code both in the cases of undeformed (third column) and deformed (fourth column)
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initial configuration: The agreement between experimental and analytical frequencies is
considered very good with a relative error well below the 4%.

Natural frequencies (setup A)
Experimental Analytical Numerical Numerical (def)
@, 2.65 2.685 2.667 2.582
[ 5.42 5.607 5.498 5.325

Table 1 — Experimental, analytical and numerical natural frequencies

After measuring the natural frequencies an identification of the dampings of symmetric
and anti-symmetric vibrations was done acquiring free-decaying oscillations and
interpolating the relevant maxima by means of an exponential law (see Figure 4):

0.04

0.10 —

0.02 —

0.00 —

symm response [V]

-0.02 —

-0.04 T T T T T T T

antisymmetric motion amplitude [V]

T T T
1.00

T T T T
2,00 3.00
time [s]

Figure 4—Free decaying oscillations for symmetric (left) and anti-symmetric (right) oscillations
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The interpolated values to be used in the companion analytical model (with
adimensionalized time on the respect of the anti-symmetric natural frequency) are
respectively: 2&w,=0.071 (symmetric component) and 2&,,=0.048 (anti-symmetric).
After evaluating the modal parameters to be used in the analytical model, having
observed in the experimental tests strong non-periodic oscillations inside the coupling
zone, was necessary to validate the a priori choice concerning the spatial truncation (2
modes) assumed in the first model. To this end, mounting accelerometers on eight
points of the arch (in the radial direction first and in the tangential after), synchronous
time series were acquired during the motion. Repeating the acquisition during periodic
(simple and coupled) and a chaotic (always coupled) evolutions, it was possible to
evaluate the spatial coherence by means of the Karhunen-Loeve decomposition [10]. In
the periodic cases the proper orthogonal modes (pom’s) correspond to spatial shapes
similar to the normal modes. In Figure 5, such simple cases (left and middle) were
compared with the pom s correspondmg to a full developed chaotic regime (rlght)
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Figure 5 — Proper orth. modes (radial comp.): periodic (left and middle) and chaotic (right) evolutions
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From Figure 5 it was possible to try the following conclusions:

o the spatial shapes visited in average during a chaotic evolution looks like the ones
pertaining the periodic response hence justifying, at a first level of approximation,
the use of a simple, reduced 2 d.o.f. model also to predict chaotic motions,

e no more than two shapes are involved in the planar dynamics of the arch being,
further contribution, practically absent.

With the validation of preliminary tests it was therefore possible to formulate a new

analytical model coherent with the experimental evidence.

4. New analytical model

Following a nonlinear elastic mono-dimensional formulation the equations of the
motion of the circular arch were derived by applying the extended Hamilton’s principle.
In the case of negligible shear effects, the planar deformation of the arch is described
when the relations of finite extensional strain and change in curvature are expressed in
terms of u(¢,z) and v(@,¢), the radial and tangential components of the displacement field
(see Figure 1). They are adimensionalized in the following on the respect of the radius R
of the circular arch. Considering two points P and Q on the arch axis, infinitely close in
the undeformed configuration, calling ds their initial distance and ds’ their
corresponding distance in the deformed configuration, expressing the distances in
function of the displacement gradient and adopting the Lagrangian strain ¢ as the
measure of the axial deformation, the following expression is obtained:

W vt ut 4V
+

2

e=u'-v+

+uv' —wi' 2

Analogously, calling Ag the difference between the angles formed by two infinitely
close tangent vectors in P and Q (in the deformed and initial configurations) and
dividing by ds the following relation for the change of curvature Ay is obtained:

1 2 2 2 _ .2
A;{:[-Ej-[v"+v+ d 22u + 2v 5 u +2u'v”—v’u”+2vv"—uu”] 3)

Expressing the potential energy 2 by means of ¢ and A4y, the kinetic energy J by
means of time-derivatives of the displacement field, taking into account the work %7,

done during the motion by damping and external forces, the extended Hamilton’s
principle reads:

5’] ¢j(7 -2)dopdt + j wj(s W, de dt=0 “
t =9 Hh =9

From eq. (4) the pde’s of the motion and the relevant boundary conditions are then
obtained. A reduced 2 d.o.f. model is obtained by assuming a truncated Galerkin
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expansion of the displacement field using, as shape functions, the first symmetric (f,,g,)
and anti-symmetric (f;,g,) eigenfunctions of the linear problem [14]:

u(p,t) = £1(9)-q,() + £,(9) - q,(2)
v(@,t) = g,(9)- q,() + g,(9) - q,(1)

Carrying out the space integrations, two ode’s of the motion were obtained: the relevant
coefficients are expressed in terms of space integration of the functions f'and g. Eqgs. (6)
contain both quadratic and cubic nonlinearities and are accurate to describe moderately
large oscillations. With high opening angles, like in the examined case, the dynamic
deformation is practically inextensional: modifying the Hamiltonian (4) by adding, via a
Lagrange multiplier, the inextensibility condition, the final equations read:

%)

G+ M Gy + o4, +c20q]2 + cozq22 + caoq13 ‘*’clquqz2 = Psin(Q7)

©6)
@ tq,+q, 6,49, + cozqz2 + ("03‘123 + chqlqu =0

5. Analytical and experimental results

Analytical frequency-responses at two different forcing levels are reported in Figure 6:
at the lower forcing amplitude (left) the unimodal solution loses stability entering the
resonance region and a coupled, periodic, two-mode solution bifurcates from it. As
noted in the preliminary experimental tests, the coupled motion has an higher mean
amplitudes of oscillations. At an higher forcing level, the preceding scenario is further
complicated by the loose of stability, entering the resonance region, of the coupled
periodic solution: the latter modification corresponds to an Hopf bifurcation activating
solutions having complex time evolutions. Forcing-response curves for two different
frequencies, are reported in Figure 7 and show the classical saturation phenomenon (see
[8,9]): the pitch-fork bifurcation activating the two mode solution, supercritical at the
lower frequency (left), becomes sub-critical at the higher one.
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Figure 6—Analytical model: frequency-response plots
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Figure 7—Analytical model: forcing amplitude-response plots

Similar plots are not directly obtainable with the experimental model: in fact, coherently
with the nature of the exciter (the harmonic vertical force is obtained with two counter-
rotating unbalanced masses), varying the frequency of the excitation (the angular
velocity of the rotors), an even wider change in amplitude, linked to the power two of
the angular frequency €, is realized as well. This circumstance makes actually
impossible to perform experimental tests at fixed values of excitation amplitudes and
every test corresponds to a parabolic path in the frequency-amplitude excitation plane.
A response curve, following the cited path, is reported in Figure 8.
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Figure 8—Experimental model: response plot

Within the limits linked to the previous observation, the agreement between the
analytical and experimental plots appears good and encouraging the use of the new
analytical model in predicting both the regular and non regular dynamics of the
examined arch. A more general comparison between the two models can be observed on
Figure 9 reporting the behavior charts of analytical and experimental models:
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Figure 9—Analytical and experimental behavior charts

The two charts were obtained reporting on the forcing-frequency plane the bifurcation
points read on various response-curves. The agreement between the two charts appears
good both qualitatively and quantitatively, again confirming the accuracy of the new
analytical model in a wide range of excitation amplitudes and frequencies. Concerning
the main characteristics of the response a good agreement is found not only in the
periodic zones: inside the sub-region of complex motions, higher increasing complexity
is revealed approaching the core of the sub-zone both in the analytical and in the
experimental case. In particular, increasing the forcing frequency and entering the
instability region from it's boundary qualitatively different motions have been detected:
when the periodic coupled solutions loses stability via the Hopf bifurcation, quasi-
periodic, chaotic and then again quasi-periodic motions are observed, both in the
analytical (see Figure 10) and experimental case.
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Figure 10—Analytical model: complex transition inside the sub-area of non-periodic responses

In Figure 10 a transition of complex response for a forcing amplitude of 6N is reported.
Just after the Hopf bifurcation observable in the corresponding chart (Figure 9, left) the
attractor is the two-torus whose Poincaré section is reported in the first column.
Evolving this solution from a 2T-periodic motion (the anti-symmetric component
always is subharmonic), the section is coherently constituted of two disjointed closed
curves. The evaluation of the maximum Lyapunov exponent, correctly gives a zero
value. Increasing the forcing frequency, the surface of the torus becomes fuzzy, the
Lyapunov exponent increases (second column), then, after the torus breakdown, a fully
developed chaotic regime is observable in column 3. Further increasing the forcing
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frequency, passing again for a fuzzy torus (column 4), the motion becomes again quasi-

periodic (column 5).

A corresponding analysis was conducted on experimental time series using the delay

map technique allowing the estimation of global complexity indicators like the

correlation dimension and the maximum Lyapunov exponent: following this way it was

possible to detect, also in the case of exeprimental tests, the increasing complexity

entering the core of sub-region pertaining the complex-motions.

At a fixed forcing amplitude of p=2N and frequencies respectively €2 =4.87 and

£2,=4.92, two sample reconstruction are reported in Figure 11; they correspond to a

quasi-periodic (first line) and a chaotic (second line) case. Respectively for the two

cases, on the left, middle and right part of the plot are reported:

e a 2D-projection of the reconstructed phase space (delay coordinates) using the right
delay coming from the mutual average information analysis,

o the classical log/C(r)]-log(r) correlation curves corresponding to embedding
dimension ranging from n=2to n=12,

o the slope estimation giving, respectively a correlation dimension d,=2 for the quasi-
periodic case, and d, =3.1 for the chaotic one.

Figure 11—Experimental model: complex transition inside the sub-area of non-periodic responses

6. Conclusions

The contemporaneous analysis of an experimental and an analytical models of a double
hinged circular arch gave a complete understanding of the dynamical behavior
concerning the problem of the dynamic instability of the simple unimodal symmetric
solution under the action of a concentrated, vertical load applied on its tip. Preliminary
experimental tests furnished hints for a correct analytical modeling. Then, a systematic
analysis conducted on the two models on wide ranges of the forcing parameters showed
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a good qualitative and quantitative agreement between the two models: while in the
cases of periodic evolutions the comparison was done on the basis of the modal
components, when complex motion arise, the comparison was done on the basis of
synthetic complexity indicators like the correlation dimension and the maximum
Lyapunov exponent (delay map technique). Eventually, because theoretical results
concerning strangeness and chaoticity could be related more to the analytical modeling
than to the real behavior of structures, in the case of complex time evolutions the help of
a companion experimental model is crucial for furnishing an actual mechanical
framework to the understanding and interpretation of strange phenomena [13].
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1. Introduction

Recent studies on alternatives for structural systems designed to support
deepwater offshore platforms have introduced the compliant structure
concept, encompassing a wide class of structures into which may be
incorporated, as sub-classes, compliant towers such as guyed towers [1],
Gamma tower [2], Roseau and others [3]; and buoyant systems such as
semi-submersibles [4] and tension -leg platforms [5]. The common
characteristic of these structures is their ability to undergo large
displacements under the action of environmental loads. A particular
concept of compliant tower is known as guyed tower, whose behavior
has been extensively studied, leading to the design, fabrication and
installation of Lena Guyed Tower at the Gulf of Mexico [6]. The
guylines are connected to the tower at a position near to the level of the
resultant environmental loads and inertia forces. These guylines present
highly variable stiffness, provided by a "clump weight" mechanism near
the seabed touchdown point. The stiffness increases as these weights are
being suspended; however, in storm condition the greater values of the
displacement causes the total uplift of some guylines, thus

increasing the catenary length, reducing the guy line stiffness and
limiting the maximum stress on the cable. It is the purpose of this paper

to study the effect produced by coupling a vibration absorber to the tower
23
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in order to reduce the displacements of the tower for storm conditions
and excitation near the first natural frequency.

2. The Finite Element Model for a Guyed Tower

The present paper studies the global behavior of a 330 m guyed tower,
considering environmental loading typical of the south-eastern Brazilian
coast. The analysis employed a "complete" finite element model, shown
in the figure 1, with 468 three-dimensional nonlinear beam elements. The
behavior of the guylines is simulated by nonlinear springs with
associated forcing functions determined by previous static analysis. The
forcing function vector consists of environmental loading generated by
the ocean waves, sea currents and wind effects.

The results presented here correspond to the analysis for environmental
storm conditions, consisting of deterministic Airy waves with periods
10s, 12 s and 14 s and height values close to 9m; current velocity at sea
surface is 1.45 m/s; at the sea bottom is 0.25 m/s; the reference wind
velocity is 55 m/s.

The load distribution profiles corresponding respectively to the three
forcing functions are depicted in the figure 1. The tower is free to move
along the three directions in space and the time history related to each
mode has correspondingly the three components in X, y and z.

The dynamical analysis has been performed using a computer code
developed at COPPE. The details could be found in reference [9].

For the present discussion, in order to build up a simplified model, it is
necessary to know the nodal forces and the nodal displacements. Some
typical time histories for these two variables are presented in the figure 2
a-c. The load has clearly a nonlinear periodic behavior, with period T =
14 s equal to the wave exciting force. The displacement displays also
some non-linearity, but much less markedly as compared with the nodal
forces. The period is again the same as that of the wave.

It is important to point out that the fluid-structure interaction was taken
into account in the calculations. The effect of the variable relative
velocities of the fluid and the structure at the different members are
therefore already computed in the time histories.
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Figure 1 — Three-Dimensional Model and Views of the Coupled Model

The forcing function vector, in this example, was oriented in such a way
as to preserve the motion essentially in the same plane, namely the x-z
plane. This results in an almost plane motion, with displacements in the y
and z directions practically equal zero.

This complete analysis has the advantage of giving reliable results, very
close to the real physical model. It is however expensive. In order to
reduce the computational costs a simplified model can be used initially to
perform a parametric analysis, leading to the best configuration that
minimizes the displacement amplitudes. Afterwards this solution can be
checked with a more sophisticated model.



26

A, (m)
1600

. l/\ AN AN N /\\ A
oy ]
' / | ]
\/

V vV

T

| —T"
—
T

800 |
600

o \J [V vV
200

0.00
0.00 20.00 40.00 60.00 80.00 100.00

|
|
|
/
Y

<]

) 1000
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Figure 2.b - Time history of nodal load vector in x direction applied on the axis of the 3D tower model at
levelz=75.0m

3. The Simplified Model

The simplified model consists of two steps. First we search for a lumped
mass system that approximately reproduces the displacement time history
of the tower, as calculated by the finite element model, under equivalent
loading conditions. This is a kind of inverse problem that could be very
complicated, unless some simplifying assumptions are made, within the
expected approximation range.

Consider the lumped mass system of the figure 3. From the FEM model
it is possible to evaluate the load vector associated to this system,
consisting of equivalent forces acting on each virtual mass. The motion
will be considered plane, consistent with the previous result. The rod is
hinged at the basis and the guylines are substituted by springs as in the
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FEM model. Now, since the displacement amplitude of the points
connected to the guylines are moderate, the variation of the spring force
with the displacement amplitude

can be taken linear, with a spring constant K equal to the tangent to the

Table 1. Nodal forces

T I< Wind load Node | Load

WL
* 15 8144.0

N 14 |660136
/ 13 342822
12 1778.80
949.66
10 26049
66.15
16,73
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391
8.07
16.85
3127
0.24
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Figure3. Wave and current load distribution

curve force-displacement at the point corresponding to the average force
on the guyline (Fig. 4).

As can be seen from the FEM analysis, both the displacements and the
nodal forces are periodic functions of time with period equal to the
period of the exciting wave. We will consider here, the displacement

and nodal force vectors as harmonic functions with period
coincident with the exciting external force. This is not strictly true for
non-linear behavior, but it is a good approximation for practical
purposes and within the frame of this simplified analysis. Considering

TABLE 2. Natural spectrum of the guyed tower. First 10 natural modes. Period in
seconds.

Mode |1 2 3 4 5 6 7 8 9 10
Period |9.998 |12.479|2.437 | 1.258 | 1.106 | 1.086 | 0.787 | 0.634 | 0.623 | 0.584

the spring displacement within the linear range as shown in the figure 4,
and using the complete FEM model analysis the natural spectrum of the
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tower is found (Table 2).The problem we have now is to find the
appropriate  lumped mass oscillator, such that it will reproduce
approximately the same displacements at the corresponding levels
measured - along tethe z axis - under the action of the same forcing
functions, with the additional requirement of having the same frequency
spectrum. The tower is reduced to a bar
with concentrated masses located at the
main horizontal planes. Figure 3 -
shows the distribution of the external - %
forces which will be approximated by -
a harmonic variation with time, with period
consistent with the time history shown in

. T

the figure 2 Following the standard As
procedures of modal analysis, it can be

shown that the above requirements are met Figure 4.Typical guyline

. force-displacement function
if the masses are calculated as follows:

M=P M P! )
‘ L fppp

kT T 2 T
o, +28,0, ~w; ¢ x

@

where M and M* are the mass matrix and the generalized -diagonal- mass
matrix respectively. The vectors ¢ , p and x are the k-th modal shape
vector, the load vector and the displacement vector respectively. The
frequencies ox and ©. correspond to the k-th mode and the exciting
external force - wave - respectively. The parameter & is the generalized
damping coefficient related to the k-th mode. The matrix P is the mode-
shape matrix.

Although the analysis has been performed for the wave, current and wind
data specified in the previous section, it is expected that for small
variations of the exciting forces the displacement and load distribution
will be kept essentially the same. The amplitude varying according to the
denominator of the first term in (2).

Summarizing, the present method is aimed to determine equivalent
masses that would give for the simplified model, approximately the same
time history for the forcing functions and the displacements at the
corresponding z-coordinates of the complete model. Note that we are
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interested in the dynamical contribution of the load and displacement
vectors, that is, the total deviation from the average value. The average
value of the load is only important, in this case, to determine the
constants of the equivalent springs.

Figure 5 shows the mode shape for the first mode. Clearly the first mode
is a bending free mode and for the frequency range appearing in practical

&
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Figure 5 - Vibration mode shapes of tower axis in xz plane. (a) pendular mode

application this mode will store practically all the energy transferred to
the structure. So it is reasonable to represent the tower structure by a
single mass attached to a spring such that the natural frequency will
coincide with the first natural frequency of the tower or of the lumped
mass system, which is the same. The parametric study of a pendulum
introduced as a vibration absorber can therefore be performed much more
easily, and the results obtained with this two degree of freedom, non
linear system, reproduces satisfactorily the most important aspects of the
amplification factors for the tower, as far as the basic design variables are
concerned.

4. The Vibration Absorber Model

Let us now turn our attention to the two-degree of freedom model shown
in the figure 6. The mass M represents the equivalent mass of the tower
corresponding to ‘the position where the pendulum is connected. In this



30

paper the pendulum will be considered hinged at the top of the tower.
The mass M is taken equal to M, . The fundamental frequency for this
spring-mass single system is chosen
tobe ®, and consequently the

spring constant is K = o} M, . /\f\/\
The load vector is given by G~ | Fosen(@t+o)
F = F,sen(ow,t + ) 1] M

C @) W@

where F, = ¢/ p . Clearly w, is the
frequency of the exciting external

force. Note that the eigenvectors are t 80
normalized such that the displacement X0 m
at the level where the pendulum
is hlnged equa]s 1. The governing Figure 6. Simplified two degrees of freedom model
equations for this system are classical. They read:
d’x dx d’
(M+m )—+Cd +Et;(05en9)=F;]sen(a)e+a) 3)
2 2
mlz‘;—fw ?uc a+mg1sen9+(m1cos9)—-’5_o @)

A previous parametric analysis [7] for a similar case lead to the following
indications for the choice of the pendulum characteristics - m and [ - for
large values of 0, that is in

the non linear region:

For o, <w, bestchoice w,<w,

For w, =, w, arbitrary

For w, >®, best choice w, >,

Of course for the linear behavior the classical result holds, that is
o, =w,. For all cases the amplitude of the pendulum should be limited
to the stability region of this system and to the conditions imposed by the
design specifications.

The following combinations have been test to obtain the time response
of the displacements O(t) and x(t):

Table 3. Selected configurations. K, has been put equal zero.

CASE I 1 111 L% A%
| 0, (rad/sec) 0.628 0.628 0.628 0.628 0.628
T, ( sec) 10 10 10 10 10
| o. (rad/sec) 0.628 0.628 0.524 0.524 0.449
| T. (sec) 10 10 12 12 14
M (pendulum niass kg) 3x10° 6x10° 3x10° 6x10° 6x10°
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L (pendulum length m) 25 25 36 36 50
o, (rad/sec) 0.626 0.626 0.521 0.521 0.4429

Case V represents the introduction of the vibration absorber for the case
studied with the FEM without the pendulum. There is an effective
reduction of the amplitude of about 33% ( Fig. 7 ), for a pendulum with
mass equal to 600 metric tons and a damping ratio £,=0.02. Although
high, if we consider the absolute value, the mass of the pendulum is
about 10% of the tower total mass, which falls within an acceptable
design value. The pendulum length is equal to 50 m in this case which
depending on the tower design specifications could be a limiting factor
for the use of this device.

Cases III and IV compare the effectiveness of two pendulums as energy
absorbers, both with the same natural frequency but different masses,
when the structure is under an exciting force with period equal to 12s.
Clearly from the figures 8 a and 8 c, the pendulum with mass equal to
600 metric tons is superior. The amplitude reduction reaches about
38.5% for this case, while is only about 8.2% for a pendulum with half of
that mass. The maximum pendulum angular amplitude is about the same
for both cases, circa 1.0 rad. for the pendulum with mass equal to 300
metric tons and 0.9 rad. for 600 tons. For both cases the damping ratio
was taken equal to .02.

For an exciting force with frequency coincident with the natural
frequency of the structure, we=w, it is seen from the time histories in
figures 9 a and 9 c that, although the heavier pendulum introduces a
higher reduction factor of around 48%, nevertheless the pendulum with
mass equal to 300 tons provides a reduction in the amplitude of circa
29%. So it can be said that for the resonant frequency both pendulums
are effective in the reduction of the structure amplitude. Again the
angular amplitude for the lighter pendulum is slightly greater than that
for the heavier one. Both fall within the range {+1 rad., -1 rad. } which
is reasonable for practical purposes.

The system (3)-(4) was integrated numerically using the Runge -Kutta
method. For the present analysis the structural damping C was assumed
to vanish.

Although the model used here, introduces considerable simplifications,
the results are satisfactory for practical applications and platform design.
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Figure 7 - Uncontrolled and controlled tower top displacement (A,) responses of 2D model under wave
(T, = 14 s) for pendular absorbers (1 = 50 m; m, = 600 t) with damping factors &, = 0.02

5. Conclusions

The use of a pendulum as energy absorber, in order to reduce the
amplitudes of the tower, is effective provided that the proper combination
of frequency and mass is used. The frequency of the pendulum should be
tuned close to values of the frequency of the external force. This is
however not enough, it is also necessary to adopt a mass sufficient large
as to store an energy amount that would allow for substantial reduction in
the tower displacement. This can be tested with a simple model as
described above. The damping effect is effective in the reduction of
amplification factor but less important than the mass.

Another item that should be considered in the design is the maximum
angular displacement of the pendulum and its length as well. Both should
be limited to an acceptable range specified in the design. The
introduction of a torsional spring K, can reduce the angular amplitude. In
that case however it is necessary to change the length of the pendulum in
order to keep the frequency at a convenient value necessary to reduce the
displacements. In general it would be necessary to increase the length up

to a value given by:
4K
l=—1—l,. 1+ [1+—=
2 glm
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where |; is the length of the pendulum to provide for the “"optimal”
frequency withoutsthestorsionaluspring. For my/ey > 1, o, should be
always preater or equal to ., in which case it will be not necessary to
increase the length of the pendulum.
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One of the most important advantages in diminishing the displacement
amplitudes of the tower is the reduction of the danger of collapse due to
the fatigue of the guyed lines.

The use of this type of energy absorber is becoming more and more
frequent in towers of the type described in this paper and in tension-leg
platforms as well. Other possibilities including active control and more
complex mechanisms are under investigation now. The use of variable
mass devices deserve also the attention of engineers and investigators,
controlling for instance the water contents of reservoirs placed in
strategic points of the structure.
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COMPLEX DYNAMICS OF A ‘SIMPLE’ MECHANICAL SYSTEM:

THE PARAMETRICALLY EXCITED PENDULUM
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1. Introduction

A planar pendulum is perhaps the simplest and most quoted example of a dynamical
system, yet when driven its simplicity of description belies a range of complex dynamical
motions. Historically interest was focused on, and indeed restricted to, small
displacements from the vertical, but more recently numerical simulations may now
incorporate full nonlinear effects and large amplitudes without restrictions to small
parameters. If driven vertically at the pivot, a pendulum which can freely move in the
plane exhibits equilibrium states (corresponding to the hanging and inverted positions),
periodic solutions (oscillations and rotations), as well as chaotic motions, all of which can
easily be seen in a mechanical experiment. Miles [11] produced an excellent overview of
the basic, qualitative dynamics but research interest is not yet exhausted with some recent
results focusing on a purely vertical forcing investigating the topological structure of
phase space [6], chaos [2] and the stability of the inverted state [1,8].

We consider here the so-called parametrically excited pendulum idealised as a mass on a
light, rigid, inextensible rod, moving in a plane and driven by a periodic vertical force.
For mathematical convenience the model is often scaled [4], leading to the fundamental
equation

O+ cd+(1+ peos(ar)) sind = 0 (1)

where 1} measures the anti-clockwise angle from the downward hanging state. The terms

p and @ correspond to the scaled amplitude and frequency of the driving force used

generally as control parameters. In practice the damping may have a nonlinear velocity

dependence and for small, low velocity oscillations, be governed by friction in the pivot,
35
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but is taken here as a constant (¢ = 0.1) times the velocity in line with earlier experimental
and numerical investigations. Writing

av .
——=sin? V =— cost}
75 2

allows us to view the dynamics as a particle moving in a potential energy function (V).

Small oscillations correspond to periodic motions within the well while rotations lead to
escape from the local potential well between (+7m, -m), see figure 1. In this way
comparisons can be made with general results regarding escape from a potential well
which underpins a wide range of problems including ship capsize and buckling [14].

For small driving amplitudes the downward hanging state forms a stable equilibrium of
the model system (1). However, in line with the behaviour of linear counterpart known as
the Mathieu equation [10], this hanging state becomes unstable in a series of zones, the
most predominant of which is located about @ = 2, on which we focus our attention. A
linear analysis can reveal some insight but for the full nonlinear problem numerical
simulations are preferable.

Numerically we can fix one parameter, @ say, and follow the stable solutions which
emanate from the hanging state as we vary the other parameter p using numerical path
following techniques [9]. For example the schematic diagram of figure 2 shows that if @
is fixed at 2.1 and p increased, then the hanging solution remains stable until a pitchfork
bifurcation occurs (denoted at PF). Thereafter the only local stable solution is an
oscillation whose period is twice the period of the forcing. As p increases further this
solution remains stable until the system breaks symmetry (at S), after which two anti-
symmetric oscillating solutions exist of which only one is drawn on the figure. This
solution then undergoes a cascade of period doubling bifurcations at F' culminating in a
chaotic oscillating motion, which is stable over only a very small range of the parameter.
For a very small increase in p the chaotic motion loses stability via a global bifurcation
and thereafter a trajectory seeks an alternative steady state which almost always
corresponds to escape from the local potential well. Such solutions can be rotating
periodic solutions, but more typically this escape leads to a chaotic motion which can be
thought of as a global cross-well motion involving oscillations, in some well, followed by
an irregular series of left and right rotations. Experimentally such motion produces a
series of clockwise and anti-clockwise rotations and oscillations of the pendulum in a
random-like manner where almost any sequence of left and right swings is possible. This
motion is referred to as a tumbling chaotic solution.
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Standard techniques of path following can also be extended to locate and follow
bifurcations as both parameters are varied [9], so that we can plot, in figure 3a, the zones
in parameter space in which the various solutions described above exist.

The same routine can also be carried out to locate and follow rotating solutions. If we
consider the most basic rotating solution which appears at a saddle node bifurcation at A
and performs one rotation in one period of the forcing, then this also undergoes a period
doubling bifurcation (which we shall denote B) and subsequent cascade (at F) to a
rotating chaotic motion shown in figure 3b. Again this chaotic solution is stable only over
an extremely small range of the parameter space, giving way typically to the tumbling
chaotic motion. The zone in parameter space where this basic period-1 rotating solution
exists and is stable is shown between the lines A and B on figure 3b. This periodic
motion restabilises at U creating another zone of stable motion.

Stable subharmonic solutions also exist, both of an oscillatory and rotatory nature. These
may be classified according to the period (r) and, in the case of rotations (r), the number
of complete rotations, i.e. (n,r). These subharmonic solutions may coexist with the
simpler, harmonic motions and a full examination requires investigation of their basins of
attraction [5].

If we superimpose all of these solutions on the parameter space then a rich structure
exists, with coexisting solutions the norm rather than the exception. The solution onto
which the system decays will depend crucially on the initial conditions given, which leads
to complicated basins of attraction. Furthermore, a Melnikov analysis [5] shows that as
we increase p the basin boundaries become fractal [12,15]. As a consequence the
resulting dynamics is complicated even for this ‘simple’ system. Many of these motions
can easily be viewed experimentally, and worthy of note is the fact that the tumbling
chaos is stable over a reasonably broad range of the parameter space. Whereas the
oscillating and rotating chaotic motions exist over very narrow windows of parameter
space and even then are almost indistinguishable from a periodic motion with noise
superimposed.

2. Flexible Control

So far we have restricted our attention to stable solutions, but it is also known that
embedded within the chaotic attractor is a large (possibly infinite) number of unstable
periodic solutions. Precisely locating these unstable solutions can be carried out purely
numerically (using a Newton-type scheme), by using a topological analysis to guide
numerical studies [7] or via a direct examination of a time series using the method of close
returns.
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In a seminal paper by Ott, Grebogi and Yorke [13] proposed a method of control to utilise
these embedded solutions. Their method as proposed was brilliantly simple, using the
chaotic dynamics of the system to approach as close as one wished to any desired
solution. The control method forced the system onto a stable manifold of the unstable
orbit (or more precisely a linear approximation to it) and so thereafter no control is
theoretically needed; once again the system does all the work. Since that time many other
methods have been proposed to carry out the same task, though to some extent these
disguise the simplicity of the original concept.

Combining a mixture of methods to locate unstable orbits, and developing robust methods
for control even in the presence of noise, means that now we are able to select a desired
solution from a large selection of unstable motions onto which the system can be
controlled [4]. Furthermore, a chaotic solution can be controlled on to a combination of
these solutions without globally changing the system parameters, as shown in the time
history of angular velocity of figure 4; 4 different desired orbits have been stabilised and
each time control is turned off the trajectory is attracted to the chaotic motion.

3. Inverted Solution

It has been known for some time that if the pendulum system is driven hard enough, the
inverted state can stabilise [8]. Recently interest in this phenomenon has been rejuvenated
considering multiple pendulums [1]. An examination of an effective potential energy
function (V,;) by separating the rapidly oscillating motions from the smooth components
for w >>1 yields

v

2
.y () =—cost + % sin* 4

2

plotted in figure 4. From this relationship we may analytically determine the parameter
values for which the inverted solution stabilises, p,. For @ > 2 results from numerical
simulation closely match this analytical result [3] though this analysis gives no
information of the subsequent dynamics within the well.

If, instead of a purely vertical forcing, a small tilt is given to the system (1°, say) then
perhaps it is not surprising that the subsequent stable inverted solution is no longer
perfectly upright (J=m). What is remarkable is that, for fixed w, as p is increased, this
solution first stabilises in a solution whose mean variation (y ) of angular displacement
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from the inverted state (=) attains reasonably large values, as shown in figure 6, and
only approaches ¥ = 1 as @ increases.

4. Conclusions

A driven pendulum forms an archetypal dynamical system which can exhibit a wide range
of dynamical response. With parametric forcing the system displays three types of chaotic
motion; rotations, oscillations and equilibrium states. Unstable periodic orbits embedded
within the tumbling chaos motion can also be viewed in conjunction with a suitable
scheme. In addition such a pendulum has the interesting property that rapid excitation
leads to stabilisation of the inverted state.
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Figure 1. Solutions visualised as motions of a particle in the governing potential energy function: (a)
stable (filled circle) and unstable (hollow circle) equilibrium, (b) oscillations and (c)
rotations.

Figure 2. Schematic representation of solution paths for fixed forcing frequency w=2.1. PF is where
the equilibrium state becomes unstable (the dotted line indicates the unstable path). S
comesponds to a symmetry-breaking bifurcation, while F represents the complete
Feigenbaum cascade of period doubling bifurcations. G corresponds to a global bifurcation.
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Figure 3. Zones of stable solution of (a) hanging and oscillating motions, and (b) rotating motions in
the space of parameters. In (a) PF denotes the line of pitchfork bifurcation which is
subcritical to the left of the point ¢, S, the symmetry breaking, F the Feigenbaum cascade
of period doubling, A the period two fold (saddle-node) line. Escape denotes the zone for
which no major stable solutions exist so that almost all trajectories leave the local potential
well. In (b) A is the saddle-node, B the first period doubling to a R(2,2) motion, F the
subsequent cascade to rotating chaos.
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Figure 4. Flexible control. The chaotic tumbling motion is controlled on to various solutions. Once
control is turned off the system once again behaves chaotically and may approach another
chosen solution. The controlled unstable solutions are a rotating (1,1), a subharmonic
rotating (5,5), a tumbling (5,2) and an oscillating (2,0) motion.
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Figure 6. Variation of mean oscillation from the upward vertical y versus p.
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Abstract. Two procedures for the control design in dynamical systems subjected to the
control and state constraints are described and applied to the control of oscillations. The
first approach is based on the decomposition of the original system with many degrees of
freedom into simple oscillators; the second one is an extension of Kalman’s method. Both
approaches produce explicit control laws satisfying the constraints imposed and driving
the system from a given initial state to the terminal state in finite time. Several examples
are presented.

1. Introduction

There exist several approaches to the control design in dynamical systems with
many degrees of freedom. In the classical linear methods of automatic control, the
control u is represented as a linear operator of the state z: w = Lz. This approach
has the following shortcomings. In the vicinity of the terminal state z = 0, where
z is small, the control u is also small. Thus, the control possibilities are not used
in full here; as a result the time of motion T is infinite, and z — 0 as t — co. On
the other hand, if x is large enough, then u also becomes large, and the constraints
imposed on control can be violated. Besides, the application of linear methods to
nonlinear systems is often questionable. The methods of optimal control [1] are
applicable to nonlinear systems and can drive the system to the terminal state in
minimal time, taking into account various constraints. However, it is very difficult
to obtain closed-loop optimal controls for systems with many degrees of freedom.
Such well-known methods for the control design as the method of variable structure
systems and feedback linearization do not explicitly take into account the control
and state constraints.

In this paper, we consider two approaches to the control design for dynamical
systems in the presence of constraints. The first one is based on the decomposi-
tion of the system with many degrees of freedom into linear oscillators controlled
by bounded forces. The second approach is an extension of well-known Kalman’s
method [2] ( originally developed for linear systems in the absence of constraints)
to the case of constraints imposed on the control and state variables. Note that,
even for linear systems, the control problems are themselves essentially nonlinear, if
the control constraints are taken into account. As examples of our approaches, we
consider the control for systems of oscillators, distributed-parameter elastic systems,
and a system driven by an electric DC motor. More details and examples related to
the approaches described below can be found in [3-6].
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2. Decomposition

We consider a dynamical system with n degrees of freedom described by equa-
tions

Az + Cz = Bv+ f(z,z,t); v(t)eV, f(z,z,t)€F. (1)

Here, z € R" is a vector of generalized coordinates, A and C' are constant symmetric
positive definite n x n matrices of the kinetic and potential energy, respectively, B
is a constant n X m matrix, f is a given n-vector of nonlinear terms, and v € R™ is
a vector of controls. The values of v and f are bounded by the given sets V C R™
and F C R", respectively. We seek for a feedback control law v(z, &) which satisfies
the imposed constraints and drives the system (1) from any given initial state

z(0) = 2%, (0) = z° (2)

to the zero terminal state z(T') = 2(T) = 0 in finite time T (not fixed a priori). Let
us introduce normal coordinates ¢ = (qi,. .., ¢,) defined by the transformation

z = Hgq. (3)

Here, the n x n invertible matrix H consists of n columns A4, ...k, which are the
eigenvectors of the eigenvalue problem

(C = XA =0, i=1,..n, (4)

For the sake of simplicity, we assume that the problem (4) has n different eigenvalues
AL, ..., An. Then the transformation (3) reduces equations (1) to the system of linear
oscillators

iii+w,'2Qi=wi+Zi, wj =)\}/2, 1=1,..,n. (5)
Here, w; is the eigenfrequency of the ith oscillator, whereas w; and z; are the com-
ponents of the n-vectors w and z defined by

w=H"'A"'Bv, z=HT'A"'f. (6)

The oscillators in (5) are coupled only through the control and nonlinear terms. On
the strength of (1), the vectors w and z belong to the following sets in R™:

weW=H"'A"BY, ze€Z=H"'A"F. (7)

Let us consider w; and z; in each equation (5) as controls of two independent players.
The first player which chooses w; tends to bring the ith equation (5) to the zero
terminal state ¢ = ¢ = 0 in finite time, whereas the second player choosing z;
counteracts. The first player can succeed, if his control possibilities exceed those of
the second player. Thus, we come to the following conditions. Let the n-dimensional
parallelepiped P defined by

P: |w<w), i=1,..,n (8)
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exist such that the following inclusions hold for some ¢ > 0 (see Fig. 1)

Z+S.cPcCW. (9)

v s

Figure 1. Inclusions (9).

Here, S. is an n-dimensional ball of the radius . Under the condition (9), we
take
w=—-z+u (10)

where u is a new n-dimensional vector of control. Substituting (10) into (5), we
obtain

Eji—i—wfqi:u,-. (11)
The inclusions (9) ensure that there exists an n-dimensional rectangular paral-

lelepiped
U: Juwl <, i=1,..n, (12)

such that any values u € U are admissible. It means that, for any v € U and any
= € Z, the vector w from (10) satisfies the constraints (8). In other words, for any
w € U and any f € F, there exists v € V such that the corresponding w given by
(6) satisfies (8) and is presented in the form (10).

Thus, the inclusions (9) can be regarded as sufficient controllability conditions
for the system (1). Under these conditions, the control design for the system (1) is
reduced to the control of simple subsystems (11) with one degree of freedom each by
means of independent control forces u; hounded by constraints (12). To minimize
the time of control, let us choose the time-optimal control for each subsystem (11).
This feedback control is given by [1]

wi(qi, i) = uf sign[r(z) —y), Y #0
wi(qi, Gs) = ui signz = —uisigny, & =0
Y(a) = (= =20)'? —2<2 <0 (13)
Pla) = ple+2), o< -2 bla)= —d(-a), >0

v = ()}

wig, oy = (u)) 'wig, w>0.
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Here, z and y are, respectively, the non-dimensional coordinate and velocity of the
ith oscillator. The switching curve y = () for the control (13) possesses central
symmetry and consists of semicircles of unit radii with centres at the points y = 0,
r=%(2k+1), k=1,.... In Fig. 2 the solid line gives the switching curve, and the
thin line is one of the time-optimal trajectories. The arrows show the direction of
motion along the trajectory.

-1 X
u=+1

Figure 2. Time-optimal feedback control of the linear oscillator.

The total time of control is given by
T=maxT;, i=1,..,n, (14)

where T; is the time of control for the ith oscillator. The following upper estimate
on T; is obtained in [3]

Ti(q?, 6f) < m(ud)™ [pe/2 + (2udw pi)?] (15)

. 1/2 .
pi = [wf(q?)z’ + (q?)g] , w; >0, 1=1,...,n.

Here, ¢ and ¢? are the initial data for the ith oscillator related to the initial data
(2) by equation (3).

The procedure described above makes it possible to obtain the control satisfying
the imposed constraints and driving the system (1) to the zero terminal state z(0) =
#(0) = 0 in finite time which is estimated from above by means of formulas (14) and
(15). The choice of parallelepiped P satisfying the conditions (9), in other words, the
choice of the constraints w{ in (8) and u in (12), can be used in order to minimize
the total time of control (14).

3. Distributed-Parameter Elastic System
Let us apply the decomposition approach to an elastic distributed-parameter

system described by the equation

wy = Aw +v. (16)

Here, w(z,t) is a scalar elastic displacement depending on the position vector z € R"
and time ¢, where 2 belongs to the domain  C R" and t > 0. In (16), the distributed
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control force v is bounded by the constraint
lv(z,t)| <wvo, z€Q, t>0, (17)

where vg is a given constant, and A is a linear elliptic differential operator containing
partial derivatives with respect to x;, ¢ = 1,....,n. The coeflicients of A are
independent of ¢, and its order is even: ord A = 2m. For example, if m = 1 and
A = A, equation (16) becomes the wave equation, and if m = 2 and A = —A?, it
describes the vibration of beams (for n = 1) or plates (for n = 2). Homogeneous
boundary conditions are imposed at the boundary I' of the domain D:

Mw=0, M=(M,...M,), z€Tl, t>0. (18)

Here, M; is a linear differential operator of order ord M; < 2m with coefficients
independent of ¢. In particular, if Mw = w, we have the Dirichlet condition. The
initial conditions are

w(z,0) = wo(z), wy(z,0) = wye(z). (19)

We seek for a control v(z, ) satisfying (17) and such that the corresponding solution
of (16) under the boundary conditions (18) and initial conditions (19) satisfies the
zero terminal conditions w(z,T') = wy(z,T) = 0 at some finite (unspecified) instant
T. Let us introduce the eigenvalue problem related to our initial-boundary-value

problem
Api = —Xipi, z€Q; Mp;i=0, z€l (20)

(pir 1) = /ﬂ%(l)%(ﬂf)dﬂﬁ = 0.

Here, 6 is the Kronecker delta. Under well-known conditions, the eigenvalue prob-
lem (20) has a discrete denumerable spectrum of nonnegative eigenvalues which can
be numbered in non-decreasing order: A\, < Ay < ..., \; = 00, and the corresponding
eigenfunctions ¢ (z) form an orthonormal system complete in 0. Using the Fourier
method, we seek w and v as the series

w(z,t) =3 a(t)ei(e), v(e,t) =D wilt)ei(z). (21)
Summation over i is performed from 1 to co. We assume that A\, > 0; the case
A1 = 0 was considered in [3]. Substituting (21) into (16), (19) and using (20), we
obtain for g;, u; equations (11) with w; = A%, We impose the constraints (12) on
u;, where u? are to be chosen later, and denote

1

P, = I;lg&(]go,-(ac)l, 1=1,2,.... (22)

To ensure the control constraint (17), it is sufficient, on the strength of (21) and
(22), to require:

Zu?@i <0 (23)
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We choose the control u; for each subsystem (11) according to (13) and take
u =spi, 1=1,2,.., x>0 (24)

where s is a constant and p; is defined in (15). Substituting (24) into (15) and (14)
and taking into account that w; > wy, we obtain the upper estimate on the control
time

T<n [(2%)_1 + 21/2((4)1%)-1/2] . i=1,2,... (25)

It remains to choose the constant s so that the constraint (17) holds. Substituting
(24) into (23), we obtain
=1 pi®; (26)

where p; and ®; are specified in (15) and (22), respectively. As follows from (15), if
the following two series converge

Ewilq?|q>i < 00, Z lqzolq)i < oo, (27)

then the series (26) converges too.

Let us summarize the obtained results. Suppose the Fourier coefficients ¢?, ¢?
for the initial functions wo, weo in (19) are such that the both series in (27) converge.
Then the constants » and u{ can be taken according to (26) and (24). The control v
defined by (21) where u; are given by (13) satisfies the constraint (17) and brings the
system (16) from the given initial state (19) to the zero terminal state in finite time
T which is estimated from above by (25). The sufficient controllability conditions
(27) can be reduced [3] to simple differentiability conditions imposed on the initial
functions (19).

For example, in the case of a string (m = 1, A = A, n = 1), these conditions are
we € C3, wy € C? for both Dirichlet and Neumann boundary conditions. For an
elastic beam (m = 2, A = —A?% n = 1), the sufficient controllability conditions are
wy € C*, wyy € C? for various boundary conditions at the ends of the beam.

4. Application of Kalman’s Method

We consider now a general linear control system
i = Alt)e + B+ f(1) (28)
under mixed constraints imposed on the state * € R™ and control u € R™
[CH(t)z(t) + D' (t)u(t)| <1, i=1,..,1L (29)

Here, A, B, f, C%, and D' are given n x n, n x m, n x 1, [ x n, and [ x m matrices,
respectively. We seek for the control u(t) satisfying the constraints (29) and driving
the system (28) from the given initial state at ¢ = 0 to the zero terminal state in
finite (non-fixed) time T

(30)
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Denote by ®(t) the fundamental matrix of the system (28):
= A(t)®, ©(0)=E. (31)

Here, E is the n x n unit matrix. The solution of the system (28) under the initial
condition (30) is

o(t) = (O + [ 0 (7)[B(r)u(r) + [(r)]dr). (32
Inserting (32) into the terminal condition (30), we obtain
T T

/0 o7 (t)B(t)u(t)dt = 2", 2" = —2° —/0 7 (t) f(¢t)dt (33)

Kalman [2] proposed to seek the control in the absence of constraints (29) in the
form

u(t) = Q" (t)e, Q(t) =@~ ()B(t), (34)
where ¢ is a constant n-vector, and the superscript 7 denotes the transpose. Sub-
stituting (34) into (33), we obtain the equation for ¢

R(T)e =", K(0) = [ Q(r)Q"(r)dr. (3)

Here, R(t) is a symmetric nonnegative definite matrix for ¢ > 0. We assume that
R(t) is positive definite for ¢ > 0. This condition implies that the linear system
(28) is controllable. In this case we have ¢ = R™!(T')z*, and our control u(t) is
completely defined by (34) for any 7'

Let us extend this approach to the case of the constraints (29) by choosing the
appropriate T'. We substitute the control u from (34) into (32) and then insert both
x and u into (29). We obtain

[Fi(t)e+o'()| <1, e¢=RYT)2", i=1,..,1 (36)
F'(t) = C'(t)®(t)R(t) + D'(1)Q" (1),
o' (1) = Ci(1) {@(t)xf’ + / o(r) f(T)dT]

Estimating the left-hand sides of the inequalities in (36) where z* is given by
(33), one can deduce sufficient controllability conditions imposed on the time 7' and
initial state 2% under which the control (34) satisfies the imposed constraints (29).
This approach was implemented in [4-6].

5. System of Oscillators

Let us consider the system of oscillators similar to (11) but controlled by one
scalar bounded control:

Gitwig=u, |u<u® i=1,..n. (37)
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This system is a model for n pendulums (or elastic oscillators moving horizontally)
attached to a trolley which can move horizontally with a bounded acceleration u

(see Fig. 3).
u

G 13
4O AN O)N
q; \

Figure 3. System of pendulums.

We assume that all w; in (37) are different; otherwise the system is not controllable.
Let

wo=0<w <wy <...<wy, Q= min (wiy1 —w;) > 0.
0<i<n—1

The control bringing the system (37) to the state of rest (¢;(7) = ¢:(T) =0, =
1,...,n) can be found by the approach of Section 4 and is given [4] by

= zn:[a,- cos(w;t) + b; sin(w;t)] (38)

1=1

where the constants a;, b; are the components of the vector ¢ depending on T and
determined according to (35). The sufficient controllability condition can be [4]

expressed as follows
T > 2(u®) " (2nEo)/? + 2k, Q71 (39)

Z[qz + Wi (0)], K, = [5n(64n — 55)/72])'/*

It is quite natural that the required time T of the control increases, if the number
of oscillators n and their initial energy E, increase, and also if the control bound u°
and the minimal difference of eigenfrequencies ) decrease. For any T satisfying the
inequality (39), the control u(t) is given in an explicit form (38).

6. Electromechanical System

Let us consider a system of two masses m; and m, connected by an elastic spring
of stiffness ¢y and driven by a DC electric motor whose driving force F' applied to the
mass m; is proportional to the current I in the circuit of the rotor. The motion of
the system and the balance of the electric voltages in the rotor circuit are described
by equations

mi€y = co(és — &)+ F,  maby = co(€r — &) (40)
F=kI, RI+ké=U, kA >0k >0.
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Here, £, and &, are the coordinates of the masses m; and ms, respectively, k; and
k, are constant coefficients, R is the electric resistance, U is the controlling voltage,
and the term with the inductance is neglected. Equations (40) hold also for other
oscillatory systems with two degrees of freedom driven by an electric motor such
as a pendulum attached to a moving trolley or a rotating beam when only the
lowest eigenfrequency of elastic vibrations is taken into account. By introducing
non-dimensional variables and parameters

Vool = miéy + maby _ mlél + mzéz - my (& — &) (41)
TN T mama)l ) TP (my 4+ mg)lw’ (my +ma)l’
o= m1(€1 - §2) v = kyd WP = co(my + my) p= my
4 (my + my)lw’ (my + my)lw?’ mimg Mo

where [ is some constant length, we reduce equations (40) to the normalized form
1.'1 = X9, $.2 =u, fig = T4, 2-74 = —-r3t+u (42)

Here, dots denote derivatives with respect to the non-dimensional time. The con-
straints imposed on the angular velocity of the rotor, electric voltage, and current in
the rotor circuit of the motor can be presented as a system of inequalities imposed on
the non-dimensional variables (41). A typical example of these constraints is shown
in Fig. 4. Applying the approach of Section 4, we obtain the control u(t) satisfying
the mixed constraints of Fig. 4 and driving the system (42) from any initial state
2;(0) = 2) to the zero terminal state z;(T") = 0, ¢ = 1,2,3,4 in finite time T. The
required time 7' depending on the initial state is determined by a special numerical
procedure. Typical numerical results are illustrated by Fig. 5. Here, the projec-
tions of the four-dimensional phase trajectory of the system (42) in the (zy,z,)-
and (x3, z4)-planes are shown by the respective curves 1 and 2. The corresponding
trajectory of the control and state variables bounded by the constraints is shown in

Fig. 4. Here p = 0.4, u = 0.5.

Figure 4. Constraints for the electromechanical system.
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ST
Fig. 5. Phase trajectories for the electromechanical system.

7. Conclusion

Two possible approaches are described which can be used for the control of
oscillations in the presence of constraints imposed on the control and state variables.
The control laws are obtained in an explicit form, satisfy all constraints, and drive
the system from any initial state to the prescribed terminal state in finite time which
is estimated from above. Sufficient controllability conditions in the presence of the
imposed constraints are derived.
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Abstract

When during the operation of rotors supported in gas bearings their rotational
velocity reaches a sufficiently high value, loss of steady-state stability occurs.
This instability is caused by the loss of damping properties of the gas film, which
leads to self-excited vibrations. These vibrations are the basic obstacle to a
widespread application of gas bearings. The phenomenon of self-excited
vibrations can be avoided by introducing an elastic supporting structure between
the bearing bushes and the casing, characterized by properly selected stiffness
and damping coefficients. In practice such a structure can have the form of an
externally pressurized gas ring with a chamber feeding system, which ensures
the required values of stiffness and damping coefficients (with regard to the
stability). The investigations have been carried out by means of a numerical
simulation method with the use of a mathematical model of the gas bearing,
verified already many times.

1. Introduction

Gas bearings in comparison with oil bearings and rolling bearings exhibit
numerous indisputable advantages: they operate without noise, they have a low
coefficient of friction, they do not generate heat and are not subjected to wear.
These advantages of gas bearings are due to the fact that the surfaces of the
journal and bush are separated by a gas (mainly air) layer characterized by a very
low (when compared with oil) viscosity. Gas bearings retain their advantages at
high rotational velocities  which exceed significantly the maximum rotational
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velocities admissible for oil bearings and rolling bearings.

The main disadvantage of gas bearings, which prevents their widespread
applications, are the self-excited vibrations occurring when a sufficiently high
rotational velocity is achieved. The phenomenon of self-excited vibrations is
manifested by the fact that, at a critical value of the rotational velocity, the
steady-state stability is lost and the bearing journal begins to move along a
trajectory whose radius increases until the journal reaches a stable boundary
cycle. When the boundary rotational velocity is exceeded even by a few per cent,
the radius of the boundary cycle is bigger than the radial clearance of the
bearing, and thus the phenomenon of self-excited vibrations leads rapidly to
journal-bush contact and, as a result, to the destruction of the bearing.

Czolczynski’s numerical experiments [Czolczynski 1994a,b,c] have shown
that the introduction of an isotropic system of linear springs and viscous dampers
between the bearing bushes and the casing leads to a limitation of the range of
rotational velocities at which self-excited vibrations occur. The main outcome of
his work was to demonstrate that a proper selection of the values of stiffness and
damping coefficients of the elastic bush support leads to a vanishing of the
unstable regions, that is, to an elimination of the phenomenon of self-excited
vibrations. Further investigations carried out by Czolczynski and Marynowski
have provided data on the ranges of stiffness and damping coefficients, which
make it possible to avoid the loss of the steady-state stability of symmetrical
rotors supported in self-acting bearings [Czolczynski and Marynowski 1996a]
and in externally pressurized bearings [Czolczynski and Marynowski 1996b].
The object of their considerations was a symmetrical rigid rotor supported in two
gas bearings with flexibly mounted bushes. As the practical design of the elastic
support an externally pressurized air ring supporting the bearing bush with a
chamber feeding system is proposed, which stiffness and damping coefficients
are presented in this paper. To compute coefficient values an original method
described in detail in [Czolczynski 1996] has been used.

2. Gas Bearings

Gas bearings have been used to support rotors since the early 1960s. They have
been designed for such applications as gyros, supports for magnetic heads in hard
discs of computers, dental drills, or grinding machines. Though they have, as
described above, many advantages in comparison with oil bearings or rolling
bearings, gas bearings have two main disadvantages: their load capacity is
comparatively small, but the major problem in gas bearings application is the
phenomenon of self-excited vibrations. This phenomenon is the reason of their
low stability.

Because of the self-excited vibration, the rotor supported in gas bearings is
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stable only when the rotational velocity is lower than a certain stability threshold,
after which the amplitude of self-excited vibrations exceeds quickly the maximum
value determined by the bearing clearance and shaft-bush eccentricity. This leads
to journal-bush contact and to the destruction of both the rotor and the bearings.

Figure 1 shows the typical gas journal bearing, which consists of two parts:
1 is the bearing bush, and 2 - the rotating journal. 3 denotes the air gap between
the bush and the journal. The average thickness of this gap (radial clearance of
the bearing) is about 20-60 micrometers. The gas bearing may be selfactig or
externally pressurized. In Figure 1, 4 denotes the feeding system which consists
of 16 feedholes, located in two rows. The radius of each feedhole varies from
0.15 to 1 milimeter. Through these feedholes the air is transported into the
bearing gap from the compressor. The pressure of the air from the compressor
is about 0.4-0.7 Mpa. Other bearings have a chamber feeding system in which
the air from the compressor goes first to a chamber of comparatively big volume,
and then from this chamber it flows through the feedhole into the bearing gap.
The mathematical model of such bearing consists of the Reynolds equation
describing the pressure distribution in the bearing gap

_9 30P) 0 30P d +_§_
ae(PH‘ ae) ag(””‘ ae) G A )
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(P - pressure, H - bearing gap, A - velocity, £, 0 - coordinates, T - time) and the
equations describing the mass flow through the feeding system. This model is
described in details in [Czolczynski el al, 1996], and was the basis of calculations
of the stiffness and damping coefficients by means of the method described in
[Czolczynski, 1996]. In this method the coefficients are calculated from the
dynamical response (force) of the bearing on the kinematically forced harmonical
motion of the journal. In the described below results of the numerical
experiments, the bearings (and the air rings) were represented by sets of the
stiffness and damping coefficierits.

Figure 2 shows the static characteristics of three different bearings: self-
acting, externally pressurized with a direct feeding system and externally
pressurized with a chamber feeding system. In this Figure we can see the relative
eccentricity ratio € between the journal and the casing, and the angle 6, between
the direction of the journal displacement and the direction in which the loading
force acts. On the horizontal axis is the dimensionless rotational velocity of the
rotor A.

From this figure it follows that at the same loading the eccentricity is the
biggest and the most strongly dependent on A in the self-acting bearing. The
bearing with a chamber feeding system has the biggest load capacity so its
eccentricity ratio is the smallest and hardly depends on A. This means that this
bearing is almost gas static.
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3. Rotor Stability - Rigidly Mounted Bushes

Figure 3 shows the comparison between the stability thresholds for the selected
value of the load capacity F, = 1.5 and various supply pressures. As can be
easily seen, the thresholds for the systems with externally pressurized bearings
are located above the threshold for the system with self-acting bearings. The
increasing of the supply pressure from 4 to 7 (p,=7 is the maximum value from
the practical point of view) does not cause any significant increase of the stability
threshold. The most important fact is that the region of self-excited vibrations is
unlimited above, so there is no possibility to operate above this region.
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4. Rotor Stability - Flexibly Mounted Bushes

The situation changes when we introduce an elastic support, consisting of the
linear springs K, and the viscous dampers C,,, between the journal bushes and the
casing (Figure 4). Figure 5a shows a sample of the stability thresholds of
cylindrical vibrations of the rotor with flexibly mounted bushes for three selected
values of the stiffness coefficient K,, and various values of the damping
coefficient C,. As can be seen, for each stiffness coefficient K  the unstable
regions in which self-excited vibrations appear have a limited size unlike in the
case of the rotor with rigidly mounted bushes. For a small (0.5) and for a big
(3.5) values of K, the unstable regions exist for any value of the damping
coefficient C, and, in order to operate above the unstable regions, the system has
to pass through these dangerous regions. This is not possible because, if the
rotational velocity of the rotor is only a few percent bigger than the critical one,
the journals hit the bearing bushes, which leads to the destruction damage.

For a properly chosen value of K, for example K, = 2, the main unstable
region is divided into two sub-regions, bounded at points A and C and the second
(upper) unstable region ends at the point B. This means that, when C, is equal for
example to 0.6 no self-excited vibrations appear during the system operation for
any value of the rotational velocity A. Figure 5b shows the ends of unstable
regions for various values of the stiffness and damping coefficient of the elastic
support. As we see, these points derive the so called "always stable" loop. When
the values.C;-and K; are_from.the inside of this loop, the static equilibrium
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position of the rotor will always be stable, so no selfexcited vibrations will
appear.

5. Air Ring

The introduction of the elastic support between the bushes and the casing allows
us to eliminate self excited vibrations from the numerical experiment of the
rotor operation, but it is difficult to realize it in prctice as a system of massless
linear springs and viscous dampers. What is proposed here is the air ring with the
chamber feeding system, which is shown in Figure 6 (1-chamber, 2-casing, 3-
movable bush, 4-rotor, S-bearing gap, 6-air ring). A mathematical model of such
a bearing is the same as the model of the bearing with the chamber feeding
system.

Figure 7 compares the main stiffness (K,,) and damping (C,;) coefficients of
the air ring with the direct and with the chamber feeding system. As we can see,
the stiffness coefficient of the chamber ring is smaller, and the damping
coefficient is bigger than in the ring with the direct feeding system. This means
that it is more easy to design a ring with a stiffness and damping coefficient from
the inside of the always stable loop for the chamber feeding system. For
sufficiently small values of the frequency of vibrations v, the damping coefficient
of the chamber ring is negative. This means that for these frequencies the system
might undergo the phenomenon of air-hammer, which is another form of self-
excited vibrations. It appeared from our investigations, that these frequencies are
lower than the natural frequencies of the rotor investigated.

A parameter of the feeding system which influences the coefficients C,, and
K,, is the radius r, of the orifice through which the air enters the chamber (Figure
8). For ry = ry = 1.0 X 107 m, the ring has the same damping and stiffness
coefficients as the ring with the direct feeding system and ry, = 1.0 X 10 m.
A decrease in the value of r, causes a decrease in the value of the damping
coefficient, especially in the region of the air hammer, but outside of this region
the changes of C,, are very small. What is important is that the decrease in the
radius r, brings causes a significant (advantageous!) decrease of the stiffness
coefficient K, and ”introduces” us into the "always stable” loop.

6. Example

As an example of the influence of the air ring coefficients on the stability of the
rotor, the stability map of the rotor with the selfacting bearings supported in
viscous dampers and linear springs for two selected values of the stiffness
coefficient K,=5 and 16, and for various values of the damping coefficient C, is
shown (Figure 9). In this example, parameters of the rotor have been selected in
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such a way that the system has the same eigenvalues of cylindrical and conical
modes. As may be seen, for big value of K, the unstable region exists for any
damping coefficient C, - and this situation repeats for the rotor with air rings with
big orifices (practically with the direct feeding system).

As may be seen from Figure 9, for K,=16 and C,=0.9 at A=5 the system
undergoes a Hopf bifurcation, and at A=14 - a reversed Hopf bifurcation. We
may eliminate self-excited vibrations changing the radius of the orifice from
r;=1.0x10? m to r,=0.15X10? m. After this change, K, diminishes from 16 to
5, and C, from 0.9 to 0.75. For such values of K, and C,, there are no unstable
regions on the stability map.

Figure 10 shows amplitudes of vibrations of the journal (x, - solid lines) and
of the bush (x, - broken lines) in the plane in which the force F; acts as functions
of the rotational velocity A. As can seen, when r,=1.0X10? m (Figure 10a), in
the range 7,5<A <12 the amplitude of self-excited vibrations of the journal
exceeds the value which is permitted by the radial clearance of the bearing and
the value of the journal-bush eccentricity ratio. When 74=0.15X 10" m (Figure
10b), only the unbalanced vibrations and the small resonance of the bush but no
self-excited vibrations can be observed.
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7. Conclusions

We may avoid self excited vibrations of the rotor supported in gas journal
bearings by introducing an air ring with chamber feeding system between the
bearing bushes and the casing. The air hammer phenomenon does not appear in
the range of the natural frequencies of the system.
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1. Introduction

The aim of the paper is to show the use of the LAGRANGIAN approach to elec-
tromechanical driving systems also containing flexible mechanical substructures.
This approach is based on the dynamics of Hybrid Multibody Systems (HMBS)
and Discrete Electromechanical Systems (EMS), respectively. The procedure will
be demonstrated by an example of a planar motor with an elastic deformable slide,
using the software tool alaska.

The planar motor consists of a stator and an aerostatical supported slide. It works
as a hybrid stepper drive where the stator is passively. The slide is a plate (circular
or rectangular) which is assumed to be an elastic deformable body.

The dynamics of Multibody Systems with flexible substructures can be regarded
as a point dynamics in a Riemannian space V™ using a (global) RiTz-approach
to the displacement field of the elastic deformation. An elastic deformable body
is regarded as a manifold endowed with a curvilinear coordinate system. The
equations of motion are LAGRANGE’s equations of second kind.

For modelling of the elastic deformable slide eigenfunctions are used as the shape-
functions of the plates. The so-called shape-numbers in metric coefficients, Chris-
toffel-symbols and generalized forces of the LAGRANGE’s equations of motion are
calculated using symbolic computation.

2. Hybrid Multibody Systems

Using well-known concepts and definitions from continuum mechanics the tran-
sition from a reference configuration B* to the actual configuration %B; can be
described by the displacement field

u(é,t) = u'(€,t)gi(€,q,t) (1)
where
P ErEi=rrus € t) +ui(é a6 t), (2)

{€;}: affine frame fixed on B*,
{gi} : local frame on B*.
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Figure 1: Kinematics of an elastic deformable body

The local frames {g;} and {®;} on B*, B, respectively, are defined by
gi(§) :=0ix(§) , Gi(P):= Gi[x(€) +u(§, )], )
®i: = gi + ViuFge = (6F + Viu*)gr = Ei *(u)gs (4)
where
E;’(u) =67 + i/ : motion-tensor of elastic deformation,
Viuk = ;u* + TEu? : covariant derivative in B*,
Ik, : Christoffel-symbols of second kind in B*.

Then, the metrices on B*,B; respectively, are defined by g;; := gi - g; , Gij :=
®; - B; = gi; +¢€ij . Gij denotes the CAUCHY-GREEN’s metric tensor on B; and
€ij := 2V uj) + Vu"Vju, is the GREEN’s strain tensor. In general, gij,Ffj and
€ij have to be computed in curvilinear coordinates.

The kinetics of an elastic deformable body is based on the principle of virtual
work in LAGRANGE’s form. Starting from the kinetic energy and generalized forces
(inclusive the elastic potential U(z)) and using the RITz-approach

u'(€,1) = o™ (D) (§) = 2" () (§), (5)

the LAGRANGE'’s equations of motion of an elastic body explicitly read:

9ab@® + Gavi” + Laped®d® + 2Lap@®3” = Qa,

N .. b . (6)
gubqb + guu + Tuocdbc + 2F,,buq"z“ = Q.

¢® denote the generalized rigid body coordinates and z” denote the generalized
coordinates of the elastic deformations. (¢%,z") = (5°) = n denotes the represent-
ing point of the elastic body. ¢, (£) are shape-functions which have to satisfy the
kinematic constraints imposed on the boundary of the elastic body.
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The metric coefficients gq5, gav, guv, the Christoffel-symbols of first kind I'apc, Labw,
T'ybe, Dby and the generalized forces Qq, @, in the LAGRANGE's equation (6 ) have
to be generated using kinematic basic functions [1] algebraically due to the RiTz-
approach presented in [2].

In order to describe geometric constraints between elastic deformable bodies it
is necessary to introduce local body-fixed frames in 8* and in B, respectively.
In general, geometric, kinematic and dynamic constraints between two elastic de-
formable bodies in HMBS can be written, as

f7(g,qu(§),u'(€), Vind , Viu?; €, 1) = 0, (7)

fr=8,fmf =0 (8)
and

fT=0,fTi + 8,0, f0Pi° =0, (9)

respectively. These equations will be generated in a derivative-free manner for
several ordinary kinematic joints (spherical, universal, cylindrical, revolute and
translational joints) to get a complete set of model equations for a HMBS.

3. Discrete Electromechanical Systems

Electromechanical Systems (EMS) are physical structures characterized by inter-

actions between electromagnetic fields and inertial bodies [3], [4]. The interaction

can be expressed by constitutive equations (generdlized force laws) describing the

coupling of Maxwell’s theory and mechanics. Const?tutive equations describing

the coupling between the dynamics of Multibody Systems (MBS) with a finite

degree of freedom and Kirchhoff’s theory (as quasi stationary approximation of

Maxwell’s theory) define discrete EMS. A mathematical description following the

classical analytical mechanics and completed by some basic concepts and methods

of graph theory to characterize topological properties of electrical networks plays -
a fundamental role for a unified modelling and simulation of discrete EMS.

The general motion equations of an EMS read

9§’ +02guwd*d” + (2T o + Su)g® + Tuoo +su0= 0,

9rr0* + Txgd*d® — $0x900d” ¢ + (b0 + 5x6)d" + Troo + 550 = 0, (10)
where

gw = 0,0,% = I, = AILAI, Ly,

g = 0T = Xk:[fpyinyi,\ + (1 - 55)(1 = 52)07 Q] (11)

denote the generalized inductivities and masses, respectively.
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Using the topology of the representing electrical network and the constitutive
equations, the LAGRANGE’s equations (10) become
iy A9 [Liq” + OALijd*d*) + A B[ Li; @} (t) + Wi g™ + A1, Vio(t)
= —A', A1, Rij¢" — AT, Ri;df(t)
.. Y . e ; .j . 12
o + Taag = AW AT D0~ AuelLs(0) + Pl (12)

kE [BCwin + MQix] + 505 Lii5(8)d (2) + 0xViodh (t) -

These equations will be generated automatically by the simulation tool alaska.

Under the following assumptions

Al: quasistatic approximation of the Maxwell-Theory
A2: no hysteresis

A3: no saturation

A4: electrically linear constitutive equations

the following steps for getting inductivities have to be carried out:

1. Af‘ Fundamental loop matrix (Topology)

2. Lij(x) Inductivities depending on
mechanical coordinates

3. T (2) Permanent magnetic flux (in a coil
generated flux by permanent magnets)

4. Wy, =[4u.d¢* Magneto-mechanical copotential (Coenergy)

= Wh(4,7)
P = ALY linkage magnetic flux

in the fundamental loop u
¥, = Lij(z)I* + U5, () linkage magnetic flux in branch i

~ Wiy = Ly (@)D + Wiy ()1 = Wi (I,3)

(Maxwell: w, = [$dB = [H'dB; = ju;;H'H’ coenergy density)
B,‘ = [J,in]

! — 0 '
5. L BI'GIJW = WWTHlI:O

(oo = AL, AL Lis 1= 8,8,W} (4, )
6. ¢¥;=n®; n coil windings, ®;:= f% df B:divB=0,rotB=j
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4. Integrated Electromechanical Multi-Coordinate Drive
(Planar Motor) with an Elastic Deformable Slide

Modelling of Integrated Electromechanical Multi-Coordinate Drive

For the research project ”Modelling, simulation and validation of integrated elec-
tromechanical Multi-Coordiante Drives” supported by the DFG (German Research
Council), several electromechanical simulation models of linear and planar drives
are developed. An detailed description of these models can be found in [5]. These
models include beside the mechanical and electrical substructure also the mea-
surement and control systems, and the slide bearing (aerostatical air bearing).
Using such drives a high positioning accuracy should be achieved. Therefore, the
dynamics of the slide during positioning movements is an essential investigation
subject. Elastic slide deformations are possibly one of the reasons for undesired
oscillations. The used simulation tool allows the modelling of hybrid multibody
systems by various ways. In this case the global RiTz-approach is used. The driv-
ing system works as a hybrid stepping one. The driving principle is based on the
superposition of magnetic flux caused by permanent magnets and coils. Hence,
the magnetic flux is increasing or decreasing, respectively.

permanent magnets

P e Inlrlaﬂon e
. lﬁ@ﬂf =1

Figure 2: Structure of a driving unit of a hybrid stepper drive

E e d

The structure of one driving unit is shown in Figure 2. For periodical increasing
and decreasing of the magnetic flux the current direction in the coils of part a
and b must be changed periodical depending on the slide position. The simulation
model of such a unit is shown in Figure 3. In various simulations the functional
character of the model has been checked.
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Figure 4: Geometrical parameters of the driving unit

For modelling of linear and planar drives two or more of such units are placed one
after the other and side by side on a slide. A main part of the electromechanical
model is the description of the interactions between mechanical and electrical sub-
structure by means of so-called constitutive equations. These equations describe
the behaviour of electrical components depending on mechanical coordinates. In
this case these mechanical coordinates are the vertical and horizontal slide position
over the stator. The interaction is described by the coil inductivities depending on
the slide positions. The effects caused by permanent magnets are also described
by coils with constant current. The constitutive equations and parameters are
based on the electromechanical coenergy W, in the magnet gap between slide and
stator. The magnet gap coenergy W, is a function of geometrical parameters of
the driving system, shown in Figure 4 and the coil currents, respectively.

The magnetic coenergy can be expressed in the form

Wr'n':/ w;dV:Zini=%ZLi]’ﬁIj (13)
v i

where w; is the energy density in the magnet gap volume V;. The inductivities L;;
of the coils can be obtained like shown above.

Modelling of an Elastic Deformable Slide

For modelling of elastic deformable bodies by using the global RiTz-approach
suitable shape functions are required. These shape-functions must satisfy at least
the geometrical boundary conditions. The slides are regarded as free plates. The
eigenfunctions of free plates (circular or rectangular) can be used as suitable shape-
functions. To reflect the elastic behaviour appropriate eigenfunctions have to be
selected. For circular plates with a free boundary, analytical given eigenfunctions
can be used [6]:

V4Z(r,0) = B*Z(r,0) =0 (14)

is the differential equation of plate theory in polar coordinates. In the case of sym-
metric boundary conditions the solutions can be represented using the following



71

notations:
Zm = Rm(r)sin(me + ym) (15)
with
Rm(r) = C1Jm(Br) + Colm(Br) (16)

for circular plates without a hole. Using the boundary conditions for a completely
free circular plate

M.(r)|,—, =0 and V.(r)],_,=0 (17

the eigenfunctions can be expressed as
A+ B

Znnlrs) = (G ) costme) (18)
with

A = Im(ﬂm,n) (la;zn,n a® +m? + m('/ - 1)),

B = Im+l (,Bm,n a)(ﬂm,n a(V - 1))Jm(,3m,n 7‘)),

Cc = Jm(ﬂm,n) (ﬂrzn,n a’ +m? + m(u - 1)),

D Lt (ﬂm,n a)(ﬂm,n a(v = 1)), (ﬂm,n r)).

I, Ji are BESSEL-functions, a denotes the plate radius and the 8, ,, are solutions
of the characteristic equation, respectively.

For rectangular plates various combinations of boundary conditicns are possible.
Several solutions for simple boundary conditions can be found in {7]. For com-
pletely free plates, functions for mode shapes of the type

Z(z,y) = X(2)Y (y) (19)

with

cosh(km) cos(4222) + cos(kn) cosh(kn2e)

) = v/ (cosh(km)? + cos(km)?))
Yaly) = cosh(kn)cos(’”‘—bz") + cos(ky) cosh(=2L)

\/(cosh(ky,)? + cos(k,)?))

if m,n even and

sinh(kp) sin(An22) 4 sin(k,,) sinh(kn22)
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Figure 5: Some eigenmodes of a free rectangular plate

sinh(k,) sin(%224) + sin(ky) sinh(%2;2Y)
V/(sinh(kn)? — sin(kn)?)

if m,n odd can be used. a is the plate dimension in z-direction, b in y-direction.
The k,, can be obtained as the roots of the equations

Yaly) =

tan(kn,) + tanh(k,) = 0 if m even and
tan(kpy) — tanh(k,) = 0 if m odd,

kn respectively. Some eigenmodes of a free rectangular plate are shown in Figure 5.

Results

Four of the driving units described above are located on a slide. Two driving units
move along the z- and two along the y-direction. The slide is assumed to be a
square plate. Figure 6 shows the positions of the driving units. On the bottom
of the slide single forces acts vertically to describe the aerostatical bearings. The
values of the forces depend on the size of the air gap between stator and slide.
Using selected shapes-functions various shape-numbers have to be calculated if
taking into account elastic bodies. All of this numbers are integrals of functions
of the shapes-functions:

Py, =p/<p,,,<pm dV and @, = p/&,(p.,,argo#, av . (20)
v v

Such numerical integrations are extensively and should be done in a preprocessor.
g language of MAPLEV was created, which
ombinations and calculates the necessary
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s driving unit
-

Figure 6: Driving unit positions on the slide

integrals. Also the required stiffness matrix of the elastic body depending on
the selected shapes-functions will be calculated by a MAPLEV program. After
the integration of the equations of motion of the HMBS with the generalized
elastic coordinates =¥ and the selected shapes-functions the elastic displacement
u of certain selected points on the elastic body can be displayed, and the elastic
deformation of the complete body can be shown as an animated plot using a special
MAPLEV program.
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Abstract

We propose a new shipboard crane configuration for offioading cargo
in open seas. We show that the “Maryland Rigging” crane of ship’s con-
figuration, used in association with a friction control mechanism, provides
a very effective method for reducing load pendulation caused by the mo-
tion of the crane in the roll direction. The effectiveness of the control
technique is obtained by comparing the performances of the “Maryland
Rigging” configuration with the standard “rider block tagline system”,
commonly used in crane ships. In most of the cases studied for which dif-
ferent sea conditions are considered, the “Maryland Rigging” reduces the
root mean square swing of the load by an order of magnitude as compared
to the current rider block configuration.

1. Introduction

There are many situations in which cranes must be operated on a moving plat-
form. One example is offloading ship’s cargo in the open sea, using cranes that
are mounted on another ship. When the sea is not calm. the crane ship rolls,
pitches, heaves, etc., in response to the sea motion. Uniike a crane in a har-
bor, which is mounted on a fixed platform, the crane ship responds to the sea
motion, imparting this motion to its load. It becomes imperative to develop mo-
tion control mechanisms to achieve safe, and effective ofloading operations. The
dynamics of the load is generally three dimensional and very complicated. How-
ever, most of the damage and problems are caused by load pendulation in the
direction of the ship crane roll motion ([1], [2]). Current ship cranes have only
crude pendulation control features that are effective in limited circumstances.

A rough model of the dynamics of a rocking crane system is given by the
nonlinear pendulum equation,

£ +sinz = F(t). (1)

Here F(t) is a forcing signal due to the motion of the rocking platform, which is
irregular but nonetheless has a strong periodic component. The fluctuations in
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Simple Crane Rider Block Tagline System

Figure 1: Current rigging configurations.

amplitude and frequency may be modeled as being random (3], [4], or chaotic.
The pendulum experiences resonance when, for a certain period of time, the fre-
quency of the forcing signal is closed to the natural frequency of the pendulum.
Even with a small forcing amplitude, the amplitude of the pendulum oscillations
grows, but it generally does not grow indefinitely (even with a periodic forcing
signal) because of the nonlinearity. For the crane system, one expects large
pendulations to occur when the roll frequency is close to the natural frequency
of the system, which is of the order of 0.1 Hz for a pendulation length of around
30 meters. One can try to avoid large pendulations by dampening the system,
or by adjusting the natural frequency of the system so that resonance does not
occur.

Typical crane configuration attempt to reduce the pendulation in the cargo
with a Rider Block Tagline System (RBTS), as illustrated in Figure 1. Instead
of being connected directly to the cargo, the hoist cable is threaded through the
rider block and then connected to the cargo. The rider block is adjusted by the
tagline and the liftline (not shown) so that the effective pendulation length of
the cargo, and consequently its natural frequency, is changed.

The RBTS can be effective if the.roll motion of the ship is regular. However,
wave motion, and the ship’s response to it, may be broadband, hence resonance
can occur for a variety of natural frequencies of the crane. In such cases, the
pendulation of the cargo cannot be reduced simply by adjusting the position of
the rider block. Another problem is that quick and precise implementation of
a control strategy is not possible because it is difficult to adjust the rotational
speed of a cable winch quickly and smoothly. Observations have shown that
once the pendulation is built up in the heavy rigging gears, it is very difficult
to dissipate energy under current rigging and control designs.

In this paper, we present an alternative strategy of pendulation control,
which uses an adjustable frictional force to dissipate energy in the crane system.
This strategy is realized by a new rigging configuration as shown in Figure 3.
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This “Maryland Rigging” includes a pulley-brake assembly in addition to the
usual components. We insist that any modification of the current cranes should
meet the following requirements:

¢ minimum change from the current configuration;
e low cost;

o better control of load pendulation.

The pulley-brake assembly is intended to be a separate component, so that
it can be added to the crane system easily. The rest of the rigging system is
almost unchanged. The purpose of the pulley-brake assembly is to dampen
the load pendulation. This alone is a major advantage over existing riggings,
which do not offer any significant damping. Furthermore, the magnitude of
the breaking can be adjusted easily. The pulley-brake assembly thus offers a
practical mechanism for the implementation of a variety of control strategies,
with the level of friction as a control parameter. The simplest strategy is to
apply the brake uniformly, meaning constant friction. In this case the frictional
force is assumed to act in the opposite direction of the rotation of the pulley
with constant magnitude (independent of the speed of rotation).

A previous work [5] studied the performance of the “Maryland Rigging”
configuration using, as input data for the roll oscillations of the ship crane,
sinusoidal and chaotic signals. In that work, a constant friction force was applied
in order to reduce the load pendulation. Given continuity to that work, we now
consider a realistic roll input data measured in a real crane ship (1], [2] and the
friction forcing, introduced to dampen load pendulation, depends not only on
the direction of the rotation of the pulley (dry friction force) but also on the
magnitude of the rotational speed (viscous friction force) of the pulley.

In Section 2, we show the measured series of data points that corresponds
to the roll oscillation of a ship crane. In Section 3, we describe the models for
the “Maryland Rigging” and the rider block configurations. In Section 4, we
show how the “Maryland Rigging” with control, a combined dry-viscous friction
force, proves to be very robust to different sea conditions, preventing large load
pendulations. In Section 5, the performance of the “Maryland” configuration is
compared to the standard rider block configuration, by analyzing the root mean
square of the horizontal displacement of the load.

2. Roll Oscillation

The crane ships are considered to be under the action of sea oscillations which
impart to the ship instabilities in the roll direction. These instabilities are
measured in a real crane ship.

So, the measured data sets of the roll oscillation, 3(t), (in degrees) collected

from a crane ship, can be seen in Figures 2(A-E). Over 8000 points are collected
within a period of 4000 seconds. Each measurement is carried out at different
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Figure 2: Experimental data 8(t) for the roll oscillation in degrees.

time but at the same place. For our simulations, we use intervals of time of
1000 seconds. Thus, for reasons that will be clear later, we pick 2000 consecutive
points over these 8000 collected ones, such that the first point (that by definition
represents the roll oscillation for the time ¢t=0) in this arranged time series is
close to zero. So, (¢t = 0) =0.

With these discrete data sets, we numerically obtain, by third-order inter-
polation, smooth functions for 4(t), 5(t), B(t) that are the evolution of the roll
oscillation, the first derivative of the roll, and the second derivative of the roll,
all quantities that are needed in our simulations.

The sea conditions, available for our simulations, are the ones showed in Fig-
ure 2. However, more general situations, where we would find a more aggressive,
or calm sea than the ones measured [1], [2], would make our results even more
tangible. So, we rescale the functions 3(t), 8(t), 3(t), by a factor A, in order to
change the amplitude of the oscillations but keeping the time scale invariance:

B(t)— AB®), B'(t) —» ABQ), B'(t) — AB(), @)

where 0 < A4 < 2.5.

3. Rider Block and “Maryland Rigging” Configurations

We introduce the standard rider block tagline system in Figure 3, where we see
that the hoist cable is holded by a tagline at the rider block.

Considering the tagline cable and the hoist cable, from the upper part of
the boom to the rider block, as a rigid body (what is very reasonable to assume
once the considered sea conditions'are not so drastic), the equation of motion
for the crane of Figure 3 is
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L,=36.925

L=13.975m
-, BE)+R+ 8

gravitational center of the ship (0,0)

sea level

Figure 3: Standard rider block configuration.

b= %(p‘a‘(L5 sin(8 + & +8) + Lasin(B +8) + Lilsin(8 + 0 — fo))

+ B%(Ls cos(B + 6 + 6) + L3 cos(B + 6) + Lyl cos(B + 6 — o)) 3)
— gsin@).

In Equation (3), 8 [ represents ((t)] is the roll oscillation of the ship shown in
Figure 2, Bo=45 deg, 6=15 deg, 6 is the angle between the horizontal and the
load cable {, and L,, L3, and Ls are indicated in Figure 3.

The “Maryland Rigging” configuration is schematically shown in Figure 4.
There is a pulley that moves along the cables L; and L, whose ends are attached
to the points B and C of the boom. The load is sustained by a cable | connected
to the pulley. The control strategy is to apply a break at the pulley in order to
dampen load pendulation.

The equations of motion for the “Maryland Rigging” configuration are

myZp = Tpcosaz — Ty cosay + T3sind
m1yp = Tisinay + Ty sinag — T3cosd — myg
T -T» = f(t) (4)
16 = —z, cosd — g, sin 6 — gsinf
T3 = ma(—%,sinf + g, cos @ + gcosf + 16?),

where f(t) is a combined dry-viscous friction force that models the action of a
break over the pulley, given by
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f(t) = msign(Ly = Ly) +n2(Ly — La). (5)

In Equation (4), T}, T;, T; are the tensions along cables L, L;, and L3,
respectively. The mass of the pulley is m; and the mass of the load is mg They
are assumed to be 0.01 and 1, respectively.

In Equation (5), n; and 7, are the dry and viscous friction coefficient, re-
spectively, and L, and L, are the cable velocities. The difference L - Lz is
the rotational speed of the pulley with respect to the cable, and while the dry
friction term depends only on the direction of the pulley velocity, the viscous
friction term depends not only on the direction but also on the magnitude of
the rotational speed of the pulley.

Our control strategy consists in finding the best range of values for 7; and
n for which the load pendulation is minimum. A large variety of different
friction laws from Equation (5) were tried, considering instead of Ly, L, different
accessible parameters such as 0, 6, £, £, 8, 8. However, no better performance
than Equation (5) was found.

Equations (4) have two degrees of freedom: one given by the pulley position
T, and y, (see 6), and the other given by the angle 8 from which is obtained
the cargo position (zg, y,) by doing (zq,yq)=(zp — L c0s8, yp — Isinf).

The rider block as well as the “Maryland Rigging” parameters were chosen
according to a prototype crane ship. So, the boom length, L3 + Ly, is estimated
to be the order of 42 m and the length Ls, from the gravitational center of the
ship (the base for the crane) to the crane pedal, is to be the order of 14 m. Note
that both configurations are supposed to have similar size and length scales.

For both configurations, we choose a very special value for L;+L; in order
to let the cargo position to be 2 meters above the sea level, the maximum cable
length to be expected when offloading the cargo ship, and also the configuration
that would give the largest possible load pendulation.

For =0, both configurations are at the rest position, what means that at t=0,
6(t = 0)=0 and =0 (for both configurations), and zy, y,=0 (for the “Maryland”
configuration). The position of the pulley for the rest position is calculated by
assuming that the angle 8(t = 0) + B + 6=0o + . Thus, 4(t = 0) must be
equal to zero. That is the reason why we have arranged the data for the roll
oscillation to be such that 8(t = 0) X0 (see Figure 2).

Our simulations are performed for an interval of time of 1000 seconds, for
which the first 300 seconds are discarded in our analysis. Such transient time
is considered because it takes some time to transfer momenta from the rolling
ship to the load.

4. The “Maryland Rigging” Performance with Control

We obtain a series of profile curves relating the dependence of the root mean
square (RMS) for the horizontal displacement of the cargo position (z4) on
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Figure 4: “Maryland Rigging” configuration.

the friction coefficients n; and n,, for different rescaling factors A. We show
in Figures 5(A-B) only three curves (for n; = 0.00,0.25,0.50) that show the
RMS horizontal displacement in respect to 7, for the rescaling factors A=1.0
and A = 2.0. Figure 5 represents well the conclusions derived from an intense
analysis of a large number of profile curves.

From Figure 5, we see that the use of a single dry or viscous friction force
works well for damped oscillations. If 7;=0.00 (viscous friction), we see that a
small load pendulation is obtained for 7,=40.0. If 7,=0.0 (dry friction), good
results are obtained for 7;=0.25. However, for a practical application of the
kind of control by equations as given by (5), it is fundamental that good results
are obtained not only for some values of the friction coefficient, but rather for
a range of values giving always good results independent of the sea conditions.
We seek a control strategy that is robust for every sea condition, even when a
large variation on the friction coefficients is necessary.

5. Comparison Between “Maryland Rigging” and Rider Block Con-
figuration

To compare the performance of the “Maryland Rigging” with the standard rider
block configuration, we choose 7;=0.25 and 7,=10.0 (the black filled square in
Figure 5A), a set of parameters for which we get nearly an optimal performance
of the “Maryland Rigging” crane configuration.

As we change the amplitude factor A, we show in Figures 6(A-E) that the
RMS for the horizontal displacement of the load position for the “Maryland”
configuration is an order of magnitude lower than the rider block configuration.
Each curve in Figures 6(A-E) is obtained for one roll data series. So, Figures
6(A-E) are obtained from the roll data shown in Figures 2(A-E), respectively.
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Figure 5: Dependence of the RMS for the horizontal displacement of the load position on
m and 72 for A=1.0 (A) and A=2.0 (B).

Table 1: Ratio between the RMS displacement of rider block and the “Maryland
Rigging” for the five considered roll data sets when A=1.0 and A=2.0.

| dataset [ A=1.0 [ A=2.0 |

[ Figure 2A | 5.38 | 5.02
Figure 2B | 11.26 | 14.93
Figure 2C | 10.84 | 8.99
Figure 2D | 3.20 2.61
Figure 2E | 8.28 10.67

The ratios between the RMS displacement of rider block and the “Maryland
Rigging” for the five considered roll data sets are shown in Table , for two
values of A, A=1.0 and A=2.0. We see that the data set of Figures 2A and 2D
makes the ratio not too high. Those data sets give a characteristic frequency
not so high as the others. Thus, the “Maryland” configuration with control
is more effective in dampening the load pendulations caused by rapid ship roll
oscillations.

6. Conclusions

We have presented the new “Maryland Rigging” crane ship configuration. This
configuration is envisioned to be easily implementable into the current crane
ships, and it also provides ways of applying a simple friction control technique,
in-order-to.reduce load pendulation.

The control of load pendulation is achieved by applying a combined dry-
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Figure 6: The “Maryland Rigging” and rider block RMS displacement with respect to the
factor A. In Equation (5), 71=0.25 and 12=10.0.

viscous friction forcing, that provides a control technique which is robust for all
sea conditions (considering only instabilities in the roll direction), even when
there is a large variation of the friction coefficients.

The performance of the “Maryland Rigging” configuration to dampen load
pendulation, measured by the root mean square of the horizontal displacement
of the load, is an order of magnitude better than the rider block configuration.

In a recent work, in addition to the roll oscillation, the heave and the sway
motions of the ship were introduced into the models presented in Sec. 3. These
oscillations, also measured in a standard crane ships, change the position of
the gravitational center of the ship in the horizontal direction (sway) and in
the vertical direction (heave). The performance (RMS horizontal displacement)
of rider block configuration with roll, sway and heave motion is nearly the
same as the one obtained by considering only the roll oscillation. However,
the performance of the “Maryland Rigging”, when the roll, heave and sway
oscillations are introduced, are worse than the performance obtained considering
only the roll oscillation. Actually, with those three motions being considered,
both configurations give nearly the same performance for the root mean square
of the cargo horizontal displacement.

The reason for which the “Maryland Rigging” configuration, in presence
of the three kinds of oscillations, presents a large load pendulation is because
the load resonates with the sway oscillation. This resonance persists when the
control is done by a law of the kind of Equation (5).
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The point (zp,yp) lies on an ellipse determined by L(t)=L1+L2 and the foci on the
points B and C of Figure 4. This ellipse can be parametrized by a number £ as follows.
First, let ' and y' be the coordinates of the pulley in the frame with origin (zc, yc)

"and z’-axis along the line BC. We write ' and y' in terms of £ as 2/ = %ﬂ cosé,

L(t)2-L3
vy = @ sin €. After changing the coordinates of the pulley into the rest frame,
we have: T, = z/ cos 8 — y' sin 8 + z and yp = z'sin 8+ y' cos B + ye.



A CONSISTENT AND EFFECTIVE METHOD FOR NONLINEAR
RANDOM OSCILLATIONS OF MDOF SYSTEMS
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Abstract. The difficulties in obtaining the probability solutions of nonlin-
ear random multi-degree-of-freedom (MDOF) systems are underlined. For
the MDOF systems which are excited by white noise, a new method pro-
posed recently is applied and extended to obtain their approximate proba-
bility density function (PDF) solution. Numerical results are presented to
validate the method for the highly nonlinear random MDOF systems.

1. Introduction

The random vibrations of nonlinear systems have attracted much atten-
tion in the past decades with no consistent and effective method pro-
posed for highly nonlinear MDOF systems. Even though the investigation
on the probabilistic solutions of nonlinear random single-degree-of-freedom
(SDOF) systems has attracted much attention for half a century there has
until recently been no effective method suitable for highly nonlinear sys-
tems.

The reason that random nonlinear MDOF systems troubled many re-
searchers in various areas for almost half a century was that it was generally
difficult with any available method to obtain desirable approximate PDF so-
lutions of highly nonlinear random systems. For four- or higher-dimensional
problems, there was even no method for reasonable approximate PDF so-
lutions, except the equivalent stochastic linearization method which is suit-
able for weakly nonlinear systems without multiplicative excitation, or the
stochastic average method which is suitable for weakly damped systems
with weak excitations. Most practical problems are described by MDOF
systems with four or more degree of freedom.

The literature on exact or approximate PDF solutions of nonlinear ran-
dom systems is vast. Various methods have been proposed in past decades:
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equivalent stochastic linearization method (2], stochastic average method
(11], NonGaussian Hermite polynomial closure method (1], equivalent non-
linear system method [8], maximum entropy method [10], and multi-Gaussian
closure method [3], etc. The methods are limited by one or more of the
following: (1) They are suitable only for weakly nonlinear system with-
out multiplicative excitation, or weakly damped system with weak excita-
tions, e.g., equivalent stochastic linearization method, stochastic average
method and so on. (2) The PDF model does not satisfy the probability
theory, i.e., the method may lead to negative PDF value, e.g., Hermite
polynomial closure method. (3) They are suitable only for two-dimensional
problems, or nonlinear random vibrations of SDOF systems, e.g., all meth-
ods except equivalent stochastic linearization method, Hermite polynomial
closure method and stochastic average method. (4) Complicated nonlin-
ear algebraic equations arise and it is difficult or practically impossible to
formulate the algebraic equations because multi-dimensional integrals are
needed, e.g., maximum entropy method for which multi-dimensional inte-
grals are needed, and multi-Gaussian closure method.

A new method was reported recently for nonlinear random systems and
applied to nonlinear random SDOF systems [4-6]. In this paper, the method
is extended and applied to the PDF solution of nonlinear random vibrations
of MDOF systems excited by white noise, or to the solution of the FPK
equation in higher dimension without any limit on the degree of system
nonlinearity. The nonlinear random vibration of a highly nonlinear two-
degree-of-freedom systems is analyzed with the proposed method. Numeri-
cal results are given and compared with obtainable exact PDF solutions to
show the effectiveness of the method for nonlinear random MDOF systems.

2. Statement of Problem

Consider the following nonlinear random MDOF system:
Y + Hio(Y,Y) = Hi W (t) (1)

where Y € ®™Y;, (¢ = 1,2,--+,ny), is the component of the state vec-
tor Y. Hy : ™ x R — R; the function type of Hjp is polynomial;
Hij(i=1,2,-++,ny;j = 1,2,---,m) are constant; W;(t) is Gaussian white
noise, E[W;(t)W(t + 7)] = Si6(7), with é(t) being Dirac’s delta function
and S;x being the cross-spectral density of W;(t) and Wi(t). It is noted that
W;(t) may also be filtered white noise; in this case, more equations can be
added to system (1). Without loss of generality, system (1) is analyzed in
the following. :

Denoting ¥; = Xo9i—1,Y: = Xg, foic1 = Xoi, foi = —Hio,92i-1,; =
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0, 92:,; = Hi;j and 2ny = ng, we can express Eq. (1) in Ito’s sense as

d . .
aX‘l:fz(X)"'ngW]) 121,2,"',711;]:1,2,"',771 (2)
where X € R™=, X, is a component of the vector process X, f; : "= — R.
Generally, fi(X) is a nonlinear function of X.

The system response X is a Markov vector and the probability density
of the stationary Markov vector is governed by the following reduced FPK
equation:

0 1 9
B—:n;(fjp) - EW(GUI)) =0 3)

where x is the state vector, x € R"*, p = p(x) and
Gij = Sisgigjs (4)

The solutions to Eq. (3) are important for the statistical and reliability
analysis of random systems. As the reliability analysis of random systems
becomes more and more important and widely applied, much research work
has been done on the approximate PDF solutions because exact solutions
are very limited in practice.

Suppose that the PDF p(x) of the stationary responses of the random
system (2) satisfies the following relation:

p(x) >0 x € "=
limg, 4o p(x) =0 1=1,2,-- ng (5)
Jpne P(X)dx =1

which are usually fulfilled by the PDF of the responses of system (2). If an
approximate PDF p (x;a) is used, where a € RV and a;, (i = 1,2, .. ., Np),
are parameters to be determined, and N, is the total number of the pa-
rameters, conditions (5) should also be fulfilled by the approximate PDF.
Another requirement for the approximate PDF, as stated above, is that it
must include many parameters so that high level of approximations can be
reached.

There are four matters need to be addressed for the PDF solution of
nonlinear random MDOF systems:

e Formulate a versatile and consistent PDF model so that condition (5)
can be fulfilled.

e Arbitrary number of unknown parameters can be included in the PDF
model and the precision of approximate PDF solution can be improved as
the total number of unknown parameters increases.
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e Formulate a solution procedure with the PDF model so that practical
problems can be solved consistently.

e The PDF model and solution technique must be valid for MDOF sys-
tems.

Possible strategy attempting to address these four matters will be dis-
cussed in detail and used for the approximate PDF solution of MDOF
systems in next sections.

3. Approximate PDF Solution of Random MDOF Systems

It is assumed that the approximate PDF of random MDOF system
fulfills the following conditions:

~

P (x;a) >0 x X a € D= x RNr

P (x;a) =0 x ¢ D= i=1,2-,ng (6)

Jon P (x502)dx =1

where P (x;a) denotes the approximate PDF of x; D= = [mj — c;01,m1 +
d1(71] X [mz — €09, My +d202] X oo X [m,- — C;05, My +d,'0','] X o0 X [mnz -
CnyOngy Mng +dn,0n,] C R™ in which m; and o; denote the mean value and
standard deviation of X;, respectively. ¢; > 0 and d; > 0 are defined such
that m; — c;0; and m; + d;o locate in the tails of the PDF of X; and the
derivatives of the PDF of X; with respect to x; at m; — ¢;0; and m; + d;o
are zero. N

The approximate PDF solution P (x;a) of Eq. (3) is assumed to be of
the form

~ { cexpn(*®) x x a e DP= x RNr 0

P (x;a) =
0 x ¢ D=

where c is normalization constant and Qn(x;a) is a polynomial in the state
variables 1,2, -+, Zn,. The detailed form of the polynomial Qn(x;a) can
be determined based on known information. Generally, the following form
of Qn(x;a) may be used:

Nz

Qn(%;8) = Y AiTi+an, +137+n, 42812+ +an, (n,+3)/2Tm, +  +AN, Tn,
=1
(8)
which is a n-degree polynomial in z1,z3,...,Zn,.
Eq. (3) can also be written as follows:
; . 2
_3_f]_ op Gi; O )

6:Ejp+ fj-&?—; i Taxia.’tj -
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Generally, the FPK equation can not be satisfied exactly with P (x;a),
because P (x; a) is only an approximation to p(x), and the total number IV,

of unknown parameters is always limited in practice. Substituting P (x;a)
for p(x) in Eq. (9) leads to the following residual error

_ iy 0P Gy 0P

Axia) = 52 5 +fy 5 - Gl (10)
Substituting Eq. (7) into Eq. (10) yields
A(x;a) = 6(x;a) P (x;a) (11)
e 0Qu Gy, 0°Qu . 9Qn0Qn, O
5(x;a) = fj% T2 O0z;0x;  Oz; Ox; * 5-x__7 (12)

which can be considered as local residual error of Eq. (9) if p(x) is replaced
by P (x;a).

Because D (x;a) # 0, therefore, the only possibility for P (x; a) to satisfy
Eq. (9) is 6(x;a) = 0. However, usually §(x;a) # 0 because P (x;a) is only
an approximation to p(x). In this case, another set of mutually independent
functions Hi(x) which span the space R™» can be introduced to make the
projection of local residual error §(x;a) on R™? vanish. Therefore, this
method may be called a projection method. Suppose that §(x;a)Hg(x),
k=1,2,---,Np, is integrable in RNr| then, according to the above idea of
projection method,

8(x;a) Hx(x)dx =0, k=1,2,---,Np (13)
Rz

or

0Qn  Gij 0%Qn 0Qn 0Qn, | Of ~
/RM Ui Oz 2 (6m,~6xj Cij Oz; Ox; )+ 3xj]Hk(x)dX =0
k=1,2’...’Np (14)

This means that Eq. (9) is satisfied with p (x;a) in the average sense of
integration if §(x; a) Hi(x) is integrable in R"=.

By selecting Hy(x) as z™z52 .. -:I:ﬁ;‘:fN(x), k=ki+ky+- -+ kng,
being kq, k2, - ,kn, = 0,1,2,---, Np such that §(x;a) Hi(x) is integrable
in £"=, we give N, quadratic nonlinear algebraic equations in terms of Ny
undetermined parameters from Eq. (14). The algebraic equations can be
solved with any available method to determine the parameters.
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Numerical experience showed that a convenient and effective choice for
function fy(x) is Gaussian PDF. Because of the particular choice of fy(x),
the integration in Eq. (14) can be easily evaluated by using the relationships
between higher and lower order moments of Gaussian stochastic processes.

4. Numerical Example

Example 1. Consider the following nonlinear random two-degree-of-
freedom system:

.1 . .
Y+ ai(SuYi + 2a9512Y2) + 2a3Y1 + 4asY + 6asY? = Wi(t) (15)

N | . .
Yy + 501[2(1 — ag)S12Y1 + S22Y2] + 2a6Y2 + 4a7Y23 + 6a3Y25 = Wa(t) (16)
where a1, aj, .-+, ag are some constants; Wi(t), (i = 1,2), is Gaussian white

noise. Denoting Y7 = Xl,Yl = X5,Y, = X3 and Y, = X4, we can express
the system by the following four-dimensional nonlinear random system:

X1 = Xo (17)
X, = —-%al(Squ + 209512 X4) — 2a3 X1 — 4ag X3 — 6as X5 + Wi(t) (18)
X3 = X4 (19)
X, = —-;-al[2(1 — a3)S15Xs + S92 X4] — 206X — darX? — 6as X5 + Wa(t)

(20)

For this system, the exact stationary PDF solution (7, 9] is

1
p(z1,%2,%3,74) = CGXP{-01[§($% +af) + agz} + asa] + a5z}
+a6x§ + a-;xg + agxg]} (21)

where C is a normalization constant.

In the following analysis, the approximate PDF solutions obtained with
the proposed projection method for different n values are compared with
this exact solution. It is noted that the equivalent stochastic linearization
method is a special case of the projection method if fy(x) is selected to
be the PDF from an equivalent stochastic linearization and n = 2. In this
example, the function fy(x) is selected to be the stationary PDF from
equivalent stochastic linearization.

For a; = a3 = a4 = ag = 1,a5 = a7 = ag = 0.5 and arbitrary values of
Si1, 512, S22 and ay, the system is highly nonlinear, and the approximate
PDFs of X; and X3 obtained with the presented method are compared
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with the exact logarithmic PDF solutions in Figures 1 and 2. It is apparent
that the approximate solutions for n = 4 are very close to the exact solu-
tions. For n = 2, the results coincide with those from equivalent stochastic
linearization. The PDF solutions for n = 4 are a great improvement on
those for n = 2.

In order to show the tail performance of the PDFs, the logarithmic
PDFs are shown and compared in Figures 3 and 4. It is seen that the ap-
proximate PDFs for n = 4 are close to the exact PDF solution even in
the tails. These results validate the method for nonlinear random MDOF
systems.

PDF

16 -12 -08

X1

Figure 1 - Probability densities of X; in example 1

It is noted that the results from equivalent stochastic linearization much
deviate from the exact solutions, specially in the tails of PDFs. Numerical
experience showed that the results from equivalent stochastic linearization
also much deviate from the exact solutions in the tails of PDFs even for
weakly nonlinear systems. In other words, the tail behaviors of PDF's are
sensitive to the system nonlinearity. Hence much attention must be paid
whenythesequivalentistochasticidinearization method is used in application,
particularly when reliability analysis is concerned.
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Figure 2 - Probability densities of X3 in example 1

X4

Figure;3;=sLiogarithmicprobability densities of X; in example 1
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Log(PDF)
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Figure 4 - Logarithmic probability densities of X3 in example 1

From numerical experience we found that exact PDF's of X; and X3 can
be obtained if n = 6 and exact PDF's of X5 and X4 can also be obtained if
n > 2 for this system. We further found from numerical experience that the
projection method may provide a tool for the exact PDF solutions of the
systems which exact PDF solutions are exponential functions of polynomial.

5. Conclusion

The recently proposed method [4, 5] for the approximate PDF solution
of nonlinear random vibrations is extended to obtain approximate PDF
solutions for random MDOF systems. The approximate PDF solution is
taken as an exponential polynomial in the state variables of the system and
a set of unknown parameters. Local residual error is determined by substi-
tution of the approximate solution in the governing FPK equation. Then,
a set of basis functions spanning a finite-dimensional real space is chosen,
and the projection of the residual error is made to vanish on this space in
order to formulate quadratic algebraic equations for the unknown parame-
ters. The approximate PDF solution is thus obtained upon solving for the
unknown _parameters. The proposed solution procedure and numerical re-
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sults show that (1) the method is not limited by the degree of nonlinearity
of the system and thus suitable for highly nonlinear random systems; (2)
the approximate PDF model meets the requirement of probability theory;
(3) for systems excited by white noise, as encountered in many problems
in science and engineering, the resulting algebraic equations are quadratic
and easy to solve; (4) numerical results validated the method for MDOF
systems; (5) the solution procedure is consistent, systematic and thus easy
to implement on computers; and (6) the method may provide a tool for the
exact PDF solutions of the systems which exact PDF solutions are expo-
nential functions of polynomial.
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STABILITY AND HOPF BIFURCATION OF A FOUR-WHEEL-STEERING
VEHICLE INVOLVING DRIVER’S DELAY

H.Y.HUand Z. Q. WU
Institute of Vibration Engineering Research,

Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China

1. Introduction

With increase of vehicle speed, there is an increasing demand for safety in driving. As
the large yaw rate and sideslip angle of a vehicle body in high speed turning can not be
well controlled by steering front wheels only, the four-wheel-steering (4WS) technique
has been developed over the past decade. A great number of studies have been made on
various control strategies for 4WS vehicles since the first 4WS system was reported. Yet,
few archival publications dealt with the dynamics of 4WS vehicles with the time delay
in driver’s response and nonlinearity of the lateral tyre force taken into account. These
effects on the vehicle dynamics, hence, are still open problems. Moreover, most control
strategies designed for 4WS vehicles are based on the limit dynamics, i.e., the dynamics
of a vehicle running at infinitely low or high speed, because the dynamic behavior of a
vehicle at medium or high speed is very complicated and far from clear.

This paper presents a new mathematical model for 4WS vehicle-driver systems
during turning, with the nonlinearity in lateral tyre force and the time delays in the
driver’s response and steering mechanism taken into consideration. The model is
described by a set of 5 dimensional nonlinear differential equations with a time delay,
which results in an infinite dimensional solution space. On the basis of this model, the
steady state motion of the vehicle is determined. Then, the asymptotic stability condition
of a typical steady state motion is given. The Hopf bifurcation of the steady state motion
with the variation of vehicle speed, or preview distance and time delay of driver is
discussed. in two.cases when the linear and bilinear control strategies of rear-wheel-

steering are used, respectively.
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2. Model for the Vehicle-Driver System
2.1 LATERAL DYNAMIC EQUATIONS OF VEHICLE

Consider the vehicle model shown in Figure 1, where a symmetric rigid body of mass m
with four wheels is moving at a constant speed U. Let G denote the center of mass,
where the coordinate frame fixed on the vehicle body originates. For this model, the
lateral velocity ¥ and the yaw angular velocity r yield

{m(V+rU) =2F, cosd , +2F, cos§,,

1
1,7 =2aF, cosS , —2bF, cosd,, M

where I, is the inertia moment of rotation of the vehicle body with respect to the
vertical axis z, a and b are the distances from G to the front and rear axles, &, and &,

are the steering angles applied on the front and rear wheels, F; and F, are the lateral

forces due to the contact between the tyre and the road surface at each front and rear
wheel.

Desired 1

Y path
L
Y%
1Y,
U L. ¢
v Y
Y
Y
! L9 . S
Figure 1. A 4WS vehicle in turning Figure 2. Steering model

The lateral force is a function of the physical properties of the tyres and the
corresponding sideslip angle a, or «, observed on the front wheel or rear wheel,

respectively. These sideslip angles can be determined according to the simple geometric
relations shown in Figure 1 as follows

V+ar

V-b
a , = arctan( )=b,, a, = arctan(,—T]—r)—dr. 2)

The most popular tyre model is the Magic Formula developed by Pacejka (1 989). In this
paper, the third order truncation of the formula will be used
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Ff :_Claf +C3CI;, F;.=_D]ar +D3ais (3)

where C,, C,, D, and Dj are positive parameters.

In addition, a fixed frame of coordinates (x,y,y) is defined, where (x,y)
represents the location of G in driving and y the heading angle of the vehicle.
Obviously, the following relations hold

y=Vcosy+Usiny, w=r. “4)
2.2 MODEL FOR DRIVERS

To investigate the effect of perceptual delay of a driver on the stability of vehicles, many
mathematical models have been proposed for the driver, who senses the deviation from
the desired path and steers the vehicle to reduce the deviation as shown in Figure 2. In
this paper, the simplest driver model suggested by Nagai and Mitschke (1987) is used.
The model includes an algebraic equation and a first order differential equation. They
describe the deviation from the desired path and the retardation of driver and steering
mechanism, respectively

V(U +T,) =y (t+T,) = y(0) —éy'm, (52)
§,(N+T5,()=K,y.(t-T)), (5b)

where L denotes the preview distance, y(¢) the lateral displacement of the vehicle,
y,(t) the desired lateral displacement, y,(f) the error between desired and actual
lateral displacement, 7, the preview time, 7, the time delay of the steering mechanism,

T, the time delay of the driver, K, the steering gain, respectively.
Substituting Equation (5a) into Equation (5b) yields

T.5,(0)+8,(t)= Kylya (t—Ty) - y(t - T)—éy‘(r— ), ©)
where
T=T,+T,>0 @)

represents the total time delay in the vehicle-driver system.

2.3 CONTROL STRATEGIES FOR REAR-WHEEL-STEERING

As shown in Equation (1), the lateral acceleration is composed of two components, the
lateral velocity ¥ and the yaw rate r. As the speed of vehicle increases, the lateral
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acceleration delays longer than the yaw response. This is mainly attributable to the fact
that with an increase in vehicle speed U, the sideslip angles defined by Eq.(2) decline,
and even become negative. Thus, a number of control strategies have been developed to
make the steady state sideslip angles as close to zero as possible.

A popular control strategy is to steer the rear wheels on the basis of a pre-
determined function as below

5, =k5, +kr. ®)

There are two versions of this control strategy. One is the linear strategy, which requires

—_ +_.__’_n.a__U2
_ C (a+b) :
k6_ mb ) ’ kr—o’ (9)
a+t——
D, (a+b)

D
This strategy features that k; — 2 <0 when U—>0 and k; > ZT‘ >0 when
a 1

U — +o0. The other version is the bilinear strategy with the coefficients given by

k=-Sier, g =28 —bD) +mU”
D, 2D,U

(10)

2.4 COUPLED DYNAMIC EQUATIONS

In summary, the motion of the 4WS vehicle-driver system of concern yields a set of
non-autonomous difference-differential equations of 5 state variables (V,r,y,¥,6,) as

following

mV = -mrU +2F, V,r,6,)cosd, +2F,(V,r,8,)cos(ks;5 , +k,r),
I} =2aF, (V,r,é'f)cos&f —2bF,(V,r,5f)cos(k5§f +k,r),

Ty=Vcos://+Usiny/, 11
p=r,

. 5, K L K

5, =L -Znlyt-T)+—=yt-D+ =y, (t-T,),

=7, Ts[y( T) Uy( )] Tsyd( a

where F,(V,r,6,) and (V,r,6,) canbe determined from Egs. (2), (3) and (8), while
y,(t = T,) can be considered as the external disturbance in the dynamic analysis.
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3. Steady State Motions

Setting all derivatives in Eq.(11) as zero and making necessary manipulations, one
obtains a set of algebraic equations governing the steady state motion of the vehicle

r=0, 6,=-K,», V=-Utany,
[C/(y+68,)-Cy(y+5,) ]cos(k,6,)=0, (12)
[D,(y +ks8,)— Dy(y +kys6,)* cos(ks6,) = 0.

As proved in Wu (1998), Equation (12) has a trivial solution (0,0,0,0,0)

corresponding to the vehicle motion along the straight line y =0, as well as 8 non-

trivial solutions corresponding to the steady state motions due to the cubic nonlinearity
of tyre forces. This fact is completely different from the case studied in current literature
where the linear model of tyre forces was used.

4. Stability of Trivial Steady State Motion

By linearizing Equation (11) at (0, 0,0, 0, 0), one has the corresponding characteristic

equation
P ral +al +a, vad+a,=0, (13)
where
a,=a,+ae™,  i=1,23,4; (14)
’C,+b’D, bk,D, C,+D
a40=i+2(a ’ Ly 1y 0y, a,=0,
T, LU I, mU
ay = 2[bk,D1 LGi+Dy a’C +b’D,  2k,C,Di(a+b)
I.T,  mUT, 1,UT, ml .U
bD, —aC, 2C,D,(a+b)’ 2K, L(C, +k;D,)
+ + 2 ]’ a3l = .
1, ml,U mUT,
2 2C,D,(a+b)a+b+k,U)
1y =7_T_[(b1)l -aC))+—- — 1 (15)

2K, 2LC,D,(a+b)(ak, +b+k,U)
a, = T, [ 11 U J +(C, +k;D))],
o0, o -4KCDiard) (ks ks L¥L+b)
mi T, U

4K, C,D,(a+b)(ks; 1)

ay =0, a, = ml T
7S
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Because a,, =0 when k; # 1, none of the roots of Eq.(13) is zero. Thus, the trivial

steady state motion becomes unstable only when Eq.(13) has a pair of imaginary roots
A =+iw . If this is the case, Eq.(13) is equivalent to the following conditions

{Re(a),T) = (ay — Ay 07) cosT +(a,0—a, 0’ ) sinaT +a,0* —a,0’ = O’(16)

Im(w,T) = (a,0—-ay,0°)cosaT —(ay, —a,0’)sinol ++0° a0’ =0.
Solving Eq.(16) for coswT and sin@T , one has

2 4 2 3
cosoT = - dn = 0@ Nao0' - ay,0®) +(a,0 - a,0°)(0° - a,0*)

272 3N2 )

(ay —ay@°)" +(a 0 —a;w”) a7
2y, .5 3 3 4
sina)Tz(a°' — 00" )@ = a30°) = (3,0 — 43,0 )A4, @ _azowz)

232 3
(ay —a,0°)" +(a,,0 - ay@ )?

Eliminating coswT and sinwT in Eq.(17) results in the critical condition governed by
the following algebraic equation of 10 orders in @

w" +(ag - 2ay)0" +(ay - a3, '—2020(140)&)6 (18)

+(d}, +2a,a, —ad)o* +(aya, -al)o® —ag =0.

If Eq.(18) has no positive real root, the system is asymptotically stable for arbitrary time
delay 0< T < +o0. Otherwise, one can solve Eq.(18) for @ and substitute the positive
solution into the second equation in Eq.(17), then one solves the equation for the
minimal solution 7. . Obviously,

T, = max(T,,;, 0) (19)

gives the critical time delay when the vehicle undergoes instability.

5. Hopf Bifurcation

To make sure that the Hopf bifurcation occurs when the system undergoes instability
with the variation of a system parameter, say, u around the critical value 4, with

A(u,) = tio , one needs to check the transversality condition as following

Rc;t(iii

i | o) %0 (20)

In what follows, let U, L and T be the control parameters and suppose them to be
functions in 4 . By differentiating Eq.(13) with respectto 4, one has
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di
du

d - d . du dL dT
DY a,(=T¥ + jA e +(5A* +) a, jl/ )+ —t——=0.21)
j-ZO ! ; s dy dp du

By substituting A(,) =ti@ into Eq.(21), one obtains

dA 1 dU dL dTr
Rl . S +io, ) —+ i) — o ) —1,(22
dp |t o tioy, [(oyr +ioy) du (03R+zo-3l)dy+(o-3k+la§l)dﬂ] (22)

where

o =la,@*T+Ba, -a,Nw* +a,T-a, ]cosaT
+[(4a, —a, o +(a,, T-2a, )o]sinoT -50* +3a,,0° —a,,,
o, =l(4a, -a, T’ +(a, T -2a,,)w]coswT
~[a,To" +(3ay, —a, T)o’ +a, T -a,,)sinel +4a,,0° -2a,0,
Oy = (0" —ay,0° +ay ;) cosal - (ay ,0° -a, ,®) sinwl
4 2
FApy®@ —0yy® +Aayy,

4 2 . 3
0,y =—(Ayy@" —a, ,0 +a0,,U)s1ncoT—(a3,‘Uco —a“‘Ua))coscoT 23)
<

3
—Ay 0 4,0,

4 2 3 .
O3 =(ag,0" —ay 0" +ay ) cosol —(ay 0" —a, @) sinwl
4 2
TAy, 0 —0y, 0 +ay,,
oy =—(a,,0" -ay,0" +a,,)sinelT - (a; ,0° - a, o) cosaT
3
—Q3 0 ta,,0,
O = (a,0% —a,0*)cosaT - (a,0° —a,0* +a,0)sinwT,

5 3 4 2 .
(04 = (0,0 +a,0° -a,w)cosal +(a, 0" —a,0")sinaT.

a,, and a,, represent the partial derivatives of a, with respect to U and L,
respectively. From Eq.(22), there follows the transversality condition
dU dL daTr dU dL

dT
O, (Oyp—+0Cyy—+0,—)+0,(0,),—+0,,—+0,, —)#0. (24
IR( 2R d,u 3R dﬂ 4R dﬂ) ll( 21 d/l 3/ dﬂ 41 d,u) ( )

6. Numerical Simulations

To demonstrate the above analytic results, consider the case study of a 4WS vehicle-
driver system in Nagai et al (1995), where the following system parameters were fixed
as constants
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m=1300 Kg, 1, =3000 Kg-m?, a=1m, b=1.6m,
C, = 44400N / rad, D, = 43600N / rad, K, =002, (25)
C, = 44400N /rad’ D, =44400N /rad®,  T,=02s,

whereas
10m/s<U<80m/s, 10m< L<80m (26)
were taken as the changeable parameters.

Given a pair of (U, L), one can determine a corresponding 7. numerically from
Eqgs.(17-19). In this way, one obtains a 2-dimensional surface T.(U, L) in the parameter
space (U, L,T) as shown in Figure 3. The most flat part of surface 7 (U, L) in Figure
3 coincides with the plane 7=0. i.e., the trivial steady state motion of the vehicle
running at these combinations of (U, L) is not stable even though there is no time delay
in the response of driver. It is obvious that the 4WS vehicles, especially the one with
bilinear control strategy has the largest stable region in (U, L) plane, no matter whether
the time delay is taken into account or not.

\
l

80

Lm 00 Ums)

a. 2WS vehicle

b. 4WS vehicle c. 4WS vehicle

with linear control strategy with bilinear control strategy
Figure 3. Critical time delays for various combinations of (U, L)
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Furthermore, it can be numerical verified that the transversality condition holds in
the surface 7.(U,L)and hence the Hopf bifurcation exists in the trivial steady state
motions of both 2WS and 4WS vehicle systems. To support this assertion, the Runge-
Kutta approach with variable step was used to solve Eq.(11) in time domain. Figure 4
shows the Hopf bifurcation of the trivial steady state motion of a 4WS vehicle equipped
with bilinear control strategy runs at a speed of U =30m/s when driver has the
preview distance of L =40m.

9r ° 5}
8t Ar
7t ° 3r
6 2r
> 1F
5 Sp ° >
g 4 B
i o |
o .
1} 3r
AL
0 ¢ 92 . ° - 5 . . . ,
00 01 02 03 04 0 5 10 15 20
Time Delay T !
a. The Hopf bifurcation b. Time history of disturbed motion
with variation of time delay before the Hopf bifurcation (T = 0.1s)
06
10}
0.4
s © 0.2
T o 00
st 02
U 04
-10
’.41; 1 1 1 e 1 1 -06 1 1
0 5 10 15 20 25 30 0.5 0.0 05
! v
c. Time history of disturbed motion d. Phase portrait of disturbed motion
after the Hopf bifurcation (T = 0.35s) after the Hopf bifurcation (T = 0.35s)

Figure 4. The Hopf bifurcation cased by the time delay

7. Conclusions

The 4WS vehicle-driver system of concern has a trivial steady state motion when it runs
along a straight line, as well as 8 non-trivial steady state motions owing to the cubic
nonlinearity in lateral tyre force.
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With increase of driver’s delay, the stable region for the trivial steady state motion
shrinks in the plane spanned by the vehicle speed and the preview distance, and a
supercritical Hopf bifurcation occurs. Thus, the lateral motion of vehicle will oscillate
periodically if the driver’s delay exceeds the critical value 7, given by Eq.(19).

Compared with 2WS vehicle, the 4WS vehicle equipped with both control strategies
has better performance in the stability of the trivial steady state motion if there is no
time delay in driver’s response. Furthermore, the bilinear control strategy works better
than the linear control strategy when the time delay is taken into consideration.
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1. Introduction

Floating cranes are used for a variety of tasks in marine technology. In coastal regions
crane barges are the most commonly used vessels; in offshore engineering, larger crane
ships or semisubmersibles can be found. All are used for lift operations, transportation,
the construction of large offshore structures and for salvage operations.

The practical problems that arise during crane ship operations include the inability
to position accurately the objects being handled, and collisions. The aim of this research
project is to get a mathematical description for crane ship operations which enables pre-
dictions about the dynamical behavior of the vessel to be made. Then the results of the
analysis can be used for safety considerations and to enlarge the operating range of crane
ships.

The dynamical system consisting of the vessel, the crane and the load is frequently
modeled as a system of coupled rigid bodies. Water waves provide the principal disturbing
force. Waves, which drive the coupled system of vessel and load — usually represented by
a pendulum - are the main source of such problems. The motion of the center of mass
during lifting operations can also lead to unwanted dynamic behavior.

In recent years several publications have dealt with the dynamics of crane vessels.
Rieckert, 1992, used a mathematical model with eight degrees of freedom and compared the
results of the analysis of the linearized equations of motion with experiments. Numerical
simulations and experimental investigations concerning lifting and lowering operations
were made by Kreuzer and Mohr, 1997. The influence of nonlinearities arising from the
mooring system and viscosity of the fluid are included in a model developed by Jiang and
Schellin, 1990. The same model was used in a similar study by Kral, Kreuzer and Wilmers,
1996. They also showed that different phenomena, from period doubling to chaos, can be
found in the dynamics of the crane vessels.

In this paper we consider the behavior of a mechanical model of a crane barge, based on
the work of Jiang, 1991. We then show the results of simulations and bifurcation analyses,
which are based on a software package developed by Baumgarten, 1998. The results are
compared with experiments done at the Technical University Hamburg - Harburg and the
Berlin University of Technology.
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2. Mathematical Model

To build our mathematical model, we have assumed that the crane vessel and its suspended
load are confined to a plane.

Figure 1. Crane vessel

The hull is modeled as a rigid body and the load is idealized as a mass point. This
leads to the equations of motion of a multibody system:

M(y)y +k(y,¥) = a(y,¥) (1)

with the mass matrix M, the generalized gyroscopic forces k, the generalized forces q and
the generalized coordinates y = (z, 6, z, a)T, see Figure 1.
The generalized forces q include

— the hydrostatic forces
Fo(y)=(0, - (mp+m)ghmb, —pgAuz, 0)T (2)

with the density of water p, gravitational constant g, cross section at the water surface
Ay, heave motion z, the pitch angle §, mass of the vessel and the load m,, m; and
the metacentric helght hom,

— the forces resulting from the mooring system approximated by a polynomial, see also
Schellin and Mohr, 1998:

Fu(y) = (—c1z — co]z]z — csz®, 0, 0, O)T, (3)
where ¢; are the coefficients characteristic for the mooring system and z is the dis-

placement in the surge direction,
— the forces due to viscous drag

. 1 .
Fd(y)=(—§pcDBT|z|z, 0, 0, 07, (4)

with the drag coefficient cp, the width of the hull B and draught T,
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— the exciting wave force due to regular waves of frequency w, which is divided into a
periodic part and a constant part representing the drag force

aPdyn ¢ Cos(“’t) + QQPdrag
_ aPgyn 6 coS(wt)
Fu(t) = aPdyn - cos(wt) (5)
0

with the wave height @ and the frequency dependent coefficients pgyn; and pgrag,
— the linear hydrodynamic response forces due to the vessel’s motion with the degrees
of freedom of the crane barge collected in § = (z, 6, 2)7

Fh(S‘-') = _aoaf' + SO();’)v (6)

where in case of planar motion the frequency dependent part is described by the 3 x 1
vector sg, which is computed from the finite state space model

$3_k = Sq_k — Akso — Bxy  k=0,1,2,3 s4(t)=0 (7)

with the 3 X 3 hydrodynamic coefficient matrices Aj, B; (Jiang, 1991).

This leads to a set of 20 differential equations summarized as follows:

y y

y (M+aoo)_l(qe‘k+5.0+fw)
d | so | _ s1 — Asso — By (8)
dt | s1 | sz — Azsp — B2y ’

S2 ss — A1so — By

S3 —Aopso — Boy

3. Numerical Analysis

The numerical analysis is subdivided into two parts: (1) simulation of the system dynamics
by integration of the equations of motion; and (2) bifurcation analysis.

3.1. SIMULATION

The simulation of a dynamical system allows for the investigation of the motion of a vessel,
given the equations of motion and a set of initial conditions. Figure 2 gives an example
for the motion of the crane barge. Starting from the equilibrium position of the unforced
vessel with the length of the hoisting rope at 15m, the motion approaches a stable motion
with period one (left).

In right part of Figure 2 the same system approaches a different motion due to a
different set of initial conditions. Here the steady-state solution has the period two.

From these two examples it can be seen that mere simulation cannot reveal enough
information to describe the system dynamics sufficiently. Therefore, bifurcation analysis
has been used systematically to find different periodic solutions for the periodically forced

Ol LAC U Zyl_ﬂbl
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Figure 2. Time simulation of crane vessel

3.2. BIFURCATION ANALYSIS

Depending on the choice of the system’s parameters, the dynamics of a crane vessel driven
by regular waves could show periodic, quasi-periodic and chaotic behavior after transient
motion has decayed. Here the analysis focuses on periodic solutions, which are character-
ized by a small number of points x; in state space generated by a Poincaré map P. For a
periodic motion, these points x; satisfy the algebraic equation

Gx)=Pl(x)-x=0 (9)

where [ is the periodicity of the motion.

One means of characterizing the system behavior is a bifurcation diagram: A system
state, that is characteristic for the solution, is plotted versus a control parameter. Other
parameters of the system are kept constant. To follow a periodic solution, a control pa-
rameter A is included in equation 9:

G(x,\) =PY(x,\) —x=0. (10)

Here the length of the hoisting rope was used as parameter, and the surge motion was
used to characterize the specific solution.

With the program used for the bifurcation analysis, stable and unstable paths of peri-
odic motion can be traced by means of path following algorithms, see Baumgarten, 1998.
These algorithms give a parameter dependent solution of an underdetermined algebraic
system of equations.

The solutions, which can be described as curves, are approximated by a set of points,
see Figure 3. The first point of the solution is found by shooting methods. Then a predictor-
corrector procedure is applied to calculate more points which correspond to periodic mo-
tion of the vessel.

Path following methods can be classified either by the type of the predictor, the correc-
tor, or the parameterization. The parameterization determines the identification of points
on the curve locally. Predictors give an estimation for a new point on the curve. Frequently
used types are shown in Figure 4.

Ol LAC U Zyl_i.lbl
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initial
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Figure 3. Path following

A corrector iteration is started from the estimated value. This requires solving the
underdetermined equation

G(x,\)=0. (11)

predictor of
order 0

tangent
predictor

polynomial
predictor of
higher order

secant

predictor

Figure 4. Predictor types

When following a periodic solution a change of stability indicates a bifurcation. This
can be due to a new branch of a periodic motion or a chaotic attractor. By disturbing
the state of the system, we found different types of periodic behavior near bifurcation
points by a disturbance of the state of the system. Shooting methods were then applied
to find a periodic solution near the initial value, and the curve continuation algorithm
was restarted with the value found by the shooting methods. This method requires a
high amount of manual modification of the values used in the analysis before applying
the shooting techniques, but it is more likely to find a new solution near a critical point
compared to other algorithms.

For the mathematical model of a crane barge, periodic motions with period one, two

ee_were e_re e bifurcation analysis are shown in Figure 5.
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Figure 5. Bifurcation Diagram

4. Experiments

Experiments were made in the wave tank of the Technical University Hamburg—Harburg
with a model of a crane barge scaled 1:100. The setup allows for variation of the main
parameters also used in the mathematical model, and the motion of the vessel is measured
during the experiment. Similar experiments with a model scaled 1:25 where carried out at
the Berlin University of Technology.

sensors

wave
generator

Figure 6. Experimental setup

The Sensors yield the signals for the position of the hull, its angular velocity and the angle between the
hull and the hoisting rope.
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4.1. EXPERIMENTAL SETUP

The model of the crane barge was positioned in the middle section of the wave tank. Sensors
allowed for measurement of the position of the hull, its rotation and the position of the
load relative to the hull. A wave generator, with a wave flap, was used to produce regular
waves and to obtain a periodic forcing. The driving force was evaluated by measuring the
height and frequency of the waves by means of wave meters, see Figure 6.

cam

spring

Figure 7. Mooring System

Several experiments with different mooring systems showed that the characteristics of
the mooring line forces are crucial to the vessel’s dvnamics. It was found from calculations
as well as experiments with mooring systems that an experimental setup with chains
does not accurately represent real mooring systems. The spring-mechanism, which was
developed in order to replace the chains, is shown in Figure 7; it consists of a spring and a
combination of a cam and a roll. This yields a non-uniform ratio between the surge motion
and the strain of the spring.

The measurements were made in regular waves after the transients had decayed.

4.2. NONLINEAR PHENOMENA

One concern in the experiments was finding coexisting attractors, i.e. a set of parameters
with at least two different stable solutions. Model tests of the dynamical behavior of the
crane barge revealed the existence of stable one- and two-periodic motions. Figure 8 shows
phase portraits and Poincaré points for the motion of the model crane barge at a frequency
of 0.9 Hz. Here the surge motion was used to visualize the type of motion of the entire
system.

The period-one solution was obtained by starting the experiment from equilibrium, i.e.
the vessel was not moving when the wave generator was started. The coexisting solution
with period two was reached by disturbing the system significantly. In this case the initial
position of the vessel was prescribed which led to high mooring forces at the beginning of
the experiment.

Experimental bifurcation diagrams were obtained from a number of different measure-

ameters. Here the length of the hoisting rope was
d I
oL 4
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Figure 8. Phase diagrams of coexisting attractors

used as parameter for the experimental bifurcation diagrams. This led to the diagram
shown in Figure 9.

20 r

experimental results
0 r * o oo period-1 motion

+ + « period-2 motion
100go - oooooooao pe
r spo00C®

surge motion [mm]

230 240 250 260 270 280 290

length of hoisting rope [mm]

Figure 9. Experimentally determined bifurcation diagram

This experimental technique allows for determination of stable periodic motions with
a sufficiently large bassin of attraction.

5. Conclusions

By using a planar model of a crane barge we have confirmed numerically and experi-
mentally the existence of nonlinear phenomena in the dynamics of crane vessels - in the
numerical investigation as well as in the experimental analysis. It was found that nonlinear-
ities, especially in the mooring system, have significant influence on the vessel’s dynamics
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so that linearized approximations of the equations of motion cannot describe the dynam-
ics sufficiently. Tools from the theory of nonlinear dynamics can be applied successfully in
order to trace different solutions or bifurcations.
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On the stability of systems
Of differential equations unsolved for derivatives

by

Lé Luong Tai

1. Introduction
Consider the system of differential equations

b _ dy
d[ _f(t9y’ dl), (1)

or y=f(ty,y), where teR, =[0,+oo) ; y=(yl,y2,...,yn), f=(fl,f2,...,fn) are
vectors in the n - dimensional Euclidean space R,.Let f:R, xQ— R, ; Q is a domain
defined as follows:
Q:{y.z):yeDcR,;zeR, |7 <.
Let y(t:t,, 9, )= () t € R, be asolution of system (1). By putting
y=olt)+x, @

we replace the system (1) by

x=X(t,x,%), 3)

where X(t,x,)'c)= f(t,(p + x),(p +X) - f(t,go,qi)); X(t,0,0): 0.
The system of equations (3) is called the system of equations of excited motion,
while its non-zero solutions are called excited motions.

In this paper we suppose that the following two conditions hold:
)X (t,x,x) is a defined, continuous function satisfied all conditions of uniqueness of the
solution in the domain

121,205 |x|<H, i < +o0, 4)
where ” . H is the Euclidean norm;
ii) Solutions of the system (3) can be extendable; i.e. x(t;7,,x, ) is defined for all
(2105 o< H . 5)

We will apply all known definitions on the stability of motion as well as the
second Liapunov’s method to study this problem. As in problems on the stability for
systems of differential equations in standard form, in order to solve this problem we

introduce functions V(t,x) of real variables (t,x)e R,.,, defined in the domain ¢ 2>1,;

n+l?
”xH < H , and vanishing at the point x =0
V(1,0)=0. (6)
115
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Let x = x(t;¢,,x,) be a solution of the system of differential equations of excited

motion (3). Then the total derivative of the function V(t, x) is presented in the form

Vi, x)= {% V(r,x(z;1,,x, ))} . 7)

=l

From here it follows that

Vie,x)=V(t,,x,)+ IV(r, x(z;t,,x,))dr. (8)

In connection with the function V(t, x), we will apply definitions on the sign-
definiteness, the permission of indefinitely small extreme limit that are well - known
from the theory of the stability of motion, for example in [1].

Together with the function V(f,x) defined in the domain (5) we consider

functions ¥, (t,x,2) of 2n +1 variables (¢, x,z) defined in the domain
1>t,20; Hx”SH,
In the following we will use definitions on the sign - definiteness of the function

V, (t, X, z) in the recpect to the variable x (x - sign - definiteness) [2]

Z| <+ 9)

Definition [2]. The function V](t,x,z) is called positive (negative) definite with
respect to the variable x (x - positive definite) if there exists a positive definite function
/4 (x) dependent only on the variable x, such that the following inequality is satisfied

Vi(t,x,z)2W,(x) (or V,(t,x,2)>-W,(x)). (10)

Notice that in [2] it is shown the function V (t, X, z) is x - positive definite, if and
only if there exists a continuous increasing function c(r), r € [0, H ], ¢(0)=0 such that in

the domain (9) the following inequality is satisfied
V(6 x,2) > c(|])- (1)

2. Theorems on stability

Theorem 1. 1) If for the system of differential equations of excited motion (3) there exists
a positive definite V(t, x) such that its total derivative with respect to this system is either
a negative semi - definite function or identically equal to zero, then the unexcited motion
x =0 is stable.

2) In addition, if the positive definite V(t,x) admits an indefinitely small extreme limit
i.e. there exists a continuous increasing function b(r), r e [O,H ], 5(0)=0 such that, in
the domain (5) the inequality

v(t,x)<b(/x]) (12)

holds, then the unexcited motion x =0 is uniformly stable.
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Theorem 2. If for the system of differential equations of excited motion (3) there exists a
positive definite V(t,x) admitting an indefinitely small extreme limit, such that its total
derivative with respect to this system is a x - negative definite function, i.e.

V(t,x)z%tV— +%X(t,x,5c)= V%, %) <7, (x),

where W, (x) is a positive - definite function dependent only on x, then the unexcited
motion x =0 is asymptotically stable.

In the following we will use the definition of the domain ¥ >0 in Tchetaev’s
sense and the positive definite function ¥, (¢, x,z) in the domain ¥ > 0.

A set of points (t, X, Z) in the domain (9) is called the domain V' > 0if V(¢,x)>0.
A function Vl(t,x,z) is called positive definite in the domain ¥ >0, if for any given
positive number &>0 there exists a positive number 5(8) such that for any points
(t,x, z) in the domain (9), if V(t,x)> ¢ then V, (t,x, 2)2 J.

Theorem 3. If for the system of differential equations of excited motion (3) there exists a
sign-indefinite V(t,x) such that its total derivative with respect to this system is x-
positive definite in the domain ¥ >0 in Tchetaev’s sense, then the unexcited motion
x =0 is unstable.

Example. Consider the system of differential equations of the excited motion
1
x=ay- ax(x2 + y2 )A + xzny(t,x,y, )'c,j/),
1/
y=-—ax— ay(x2 +y? )/2 + x3y2g(t, x,y,)'c,y),
where f and g are bounded functions satisfying conditions for the existence and
uniqueness of solutions of the system.
We take Liapunov’s function in the form
1
V==(x*+y*).
S+ )
Then
y 2 2 % 3.3
V=-ax?+y ) +x*y}(f +g),
where in a enough small neighbourhood of the origin (0,0,0) the sign of ¥ is completely

determined by the sign of a. Thus, in this example, if a >0 the unexcited motion x =0
is asymptotically stable, and if a <0 the unexcited motion x = 0 is unstable.

As is well known for problems on the stability of motion, sometimes we meet
cases where we have to find conditions ensuring the asymptotic stability of the unexcited
motion x =0 under any initial values. This stability is called asymptotic stability as a
whole.
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Theorem 4. If for the system of differential equations of excited motion (3), there exists a
positive definite ¥(f,x) admitting an indefinitely small extreme limit, such that its total
derivative with respect to this system is a x - negative definite function, i.e.

V(t,x)=%t/- +%X(t,x,5c)=Vl(t,x,fc)s—W, (x).

and if the function V' satisfies the condition
lim V(t,x)=+o,

x| —>e0

then the unexcited motion x =0 is asymptotically stable as a whole.

It is easily noticed that, if the right side of the system of differential equations (3)
is not dependent on % we again get the well - known results published in handbooks on
the theory of stability of motion.

Based on the preceding results, further research can be proceed in different ways,
for example, by considering the problem on the stability of motion with respect to some
of the variables, or applying these results to the study of complicated mechanical systems
etc.

3.The problem of optimal stabilization.

Consider the system of differential equations of excited motion of a control
system

x=X(x5u), u=(u,uy,..u,), (13)
where X(t,x,z;u) is defined and continuous in the domain
t2t,, |x|<H, |2 <o; Ju|<oo. (14)

and u is a control action.
Suppose that there is a given control quality criterion in the form of the minimum
of the following integral

1= Jolsbul)a (15)

ty

where a)(t,x;u) is a non-negative continuous function in the domain (14), x[t] is the
solution of the system of differential equations (13) responding to the control u(t,x), and
ult]= ult, x[t])-
The problem of optimal stabilization is as follows [3]:

To find the control action u = uo(t,x) assuring the asymptotic stability of the unexcited
motion x=0 corresponding to the system (13). Furthermore, all other control actions
u= u'(t,x) also guaranteeing the asymptotic stability of the unexcited motion x = 0 must
satisfy the following inequality

ja)(t,xo[t];uo [t])dt < Ia)(t,x' [t} [l])dt . (16)

The function u = uo(t,x) is called the optimal control of the problem (13), (15).
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According to N.N. Krasovsky’s method we introduce into the study the following
expression

. ov oV . .
B[V;t,x,x;u]=—67+EX(t,x,x;u)+a)l(t,x,x;u), _ (17)

where
, (t,x,fc;u)= a)(t,x;u)+ X — X(t,x,)'c;u).
We have following theorem

Theorem 5. If for the system of differential equations of excited motion (13) there exist a
positive definite V° (t,x) admiting an indefinitely small extreme limit and a function

u=u’ (t, x), satisfying following conditions:

1) The function o, (t, x, %;u° (t, x)) is x - positive definite with respect to x;
ii) The following equality holds:
BlV°;t,x,5c;u°(t,x)j=0; (18)

1i1) For all values u, the inequality

B[V;t,x,fc;u]z 0,
holds, then the function u=u°(t,x) is the solution of the problem of the optimal
stabilization (13), (14), (15). Morever, for any control action u =u'(t,x) the following
equality always holds:

+]Sa)(t, epu’ [t])dt =min +Ta)(t, x"[e}u [t])dt = V°(ty,x(t,))

ly fy
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Abstract

The twisting somersaults motion of a diver in free flight is simulated using a standard man
model based on an anthropomorphic multibody system (MBS). The aim of the paper is to
present a Lyapunov-stable dynamic control law of an MBS with n degrees of freedom
moving along an m-dimensional submanifold (O<ms<n). The prescribed motion defining
that submanifold results from a kinematic analysis of video sequences. The inverse
kinematics is solved by dynamic tracking. Consistent initial velocities for the free flight are
evaluated by nonlinear optimization minimizing the deviation of the body fixed marker
points from the measurement data. So, the total amount of the angular momentum of the
MBS which has to be constant during the free flight is optimized. The conservation of the
angular momentum of the MBS defines an intrinsic constraint manifold on which the diver
is moving. This conservation law can also be used for nonholonomic motion planning.
The approach essentially uses differential-geometric concepts and methods well-known
from the Lagrangian Multibody Dynamics.

1. Introduction

Since the Olympic Games of Atlanta in 1996 the regulations in some disciplines have been
changed in such a way that the degrees of difficulty are not limited as before. Coaches as
well as athletes want to get support in creating new motions, they want to get information
about the feasibility and stability of these new motions. This point of view is especially
important in those disciplines where the athletes have to carry out a very short and high-
speed mid-air maneuver; for example in diving off high boards or spring boards, figure
skating and gymnastics. This paper deals with the motion of a diver from a high board or
a spring board, and with its modelling, simulation and control by using multibody system
dynamics.

The twisting somersault motion of a diver in free flight is simulated by using a standard
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man model based on an anthropomorphic multibody system (MBS). The main goal of the
paper is to give a Lyapunov-stable dynamic control law of a tree-like MBS with n degrees
of freedom and moving along an m-dimensional submanifold of the n-dimensional

configuration space (0 < m < n). The prescribed reference motion defining that

submanifold is obtained by kinematic analysis of video sequences of real motions. The
approach of defining a Lyapunov-stable dynamic control law is well-known in the
nonlinear control theory of robotics. It is based on differential-geometric concepts and
methods used in Lagrangian Multibody Dynamics.

2. A Standard Man Model in Multibody Dynamics

The following dynamical investigations are based on the Saziorski standard man model [1]
completed and used by the Institute of Mechatronics, Chemnitz, in several research
projects in biomechanics, especially in sports, rehabilitation, and accident mechanics [5],
see fig. 1.

The position of the man model with respect to an inertial frame is described by 31

generalized coordinates qa . Six of them describe the absolute position and orientation of

the reference body pelvis, the others describe the relative positions of the bodies. Thus
the man model has 31 degrees of freedom, 25 of which are intrinsic.

3. Definition of a Reference Motion

A special problem of motion control in sports is to define a reference motion. Which
motion can be used as a reference motion? The answer could be a motion given high marks
by the judges. A reference motion has to be defined by kinematic analysis of video
sequences of real motions. The use of the ordinary inverse kinematics does not supply
good results. The reason is that the measurement data of the time history of marker points
fixed on the gymnast (in reality or a posteriori in the video record) generally leads to wrong
driving torques calculated by inverse dynamics (even after smoothing data). Therefore, a
special approach developed at the Institute of Mechatronics is used to get a sufficiently
smoth motion and correct driving torques acting in the joints of the man model. That
approach uses so-called dynamic tracking, that means the 3-dimensional man model is
embedded in the set of marker points generated by video records, and between these
video-generated marker points and the corresponding model-fixed marker points a visco-
elastic force coupling is assumed . The numerical integration of Lagrange‘s equations of
motion yields the desired smooth time history of the reference motion. The m-dimensional

submanifold V", m = n — r = 6, of the n-dimensional configuration space V", = 31,
on which the man model has to move can be defined by rheonomic constraints
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Figure 1. Kinematic scheme of the Saziorski standard man model
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f@n=q"-qr)=0, faj|=r=25 G.1)

a . .. . . .
where ' denote the intrinsic generalized coordinates, and qg‘ (t) denotes the time

history of the reference motion obtained by dynamic tracking , as described above.

4. A Lyapunov-stable Force Control Law

The main goal is to define a Lyapunov-stable motion of the man model moving along the
submanifold V™. The control strategy should be robust with respect to initial condition
errors, sensor noise, and modelling errors.

In a first step, the calculated time history of the intrinsic coordinates qg' (1) s used to

simulate the free flying diver, i.e. the man model is partially kinematically controlled by

prescribing the intrinsic coordinates g ' as functions of time: the system is a so-called
underactuated or superarticulated mechanical system. Then, the remaining 6 external

coordinates q‘” characterize the free motion of the reference body pelvis. This motion is

strongly influenced by the corresponding initial velocities: they define the total linear
momentum as well as the total angular momentum of the man model. Therefore, for
kinematic control of the intrinsic coordinates the initial velocities corresponding to the 6

external generalized coordinates q"z have to be defined in such a way that the motion of

the diver prescribed in the 3-dimensional Euclidean space E® is approximated as well as
possible. This can be done by using nonlinear optimization. The cost functional which has
to be minimized is defined by the maximum of the squared distances between the marker
points on the gymnast and the corresponding body-fixed marker points of the man model
over a certain time interval.

A very important matter related to these investigations is the description of intrinsic
nonholonomic constraints of the man model represented by classical conservation laws:
the conservation of the total angular momentum with respect to the instantaneous center
of mass of the man model; the total angular momentum with respect to the origin of the
inertial frame as a square function of time; and the total linear momentum with respect to
the inertial frame as alinear function of time. It is usual to use such nonholonomic intrinsic
constraints for kinematic control design (nonholonomic motion planning). But, in reality,
the human motion is controlled by forces/ torques. To get these corresponding generalized
driving forces we can use the inverse dynamics. Under these calculated generalized forces,
the motion of the man model will be unstable after a short time. These effects are well-
known. Therefore, a dynamic feedback control law based on the Voronetz-equations
(Lagrange‘s equations projected onto the submanifold of a constrained mechanical
system) is used. The main idea - well-known from the nonlinear control theory
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in robotics [4] - is the nonlinear decoupling approach, i.e. an applied force acting on the
MBS has to be designed which fulfils the following conditions: the force law consists of
two components, the first is a so-called feedforward component which guarantees that the
system is moving along its nominal submanifold of the n-dimensional configuration space
V", and the second is a linear feedback component which provides (generalized)
correction forces to reduce errors in the motion caused by different reasons. Our approach
is more general than that found elsewhere because the nominal time history is prescribed

only with respect to the intrinsic coordinates q“‘ , but not with respect to the external

N a
coordinates § .

We present a so-called augmented PD-control approach. The fundamental differential-
geometric concepts and methods of the Lagrangian multibody dynamics and of the
nonlinear control theory are assumed to be known, {2, 3, 4].

Consider an n dof anthropomorphic multibody system. The representing point of that
MBS moves in the n-dimensional configuration space R" which becomes a Riemannian

space V" by introducing a Riemannian metric § ,;, and corresponding Christoffel symbols

of the first kind I’ abe - The motion equations are Lagrange‘s equations of the second kind

in explicit form:

b b -cC _ .
85(@& + T (@)d" § = 0,(¢.9.1) @.1)
Q, denote the generalized forces. The nominal submanifold R", #1:= N — I, is defined
by (3.1).

It can be shown that R™ is a Riemannian submanifold V™ also, but its metric depends on
time, [3]. The task is to find a Lyapunov-stable position control law for tracking along V™,

0 < m< n, ie.to define a control force R, such that g(¢) € V" or (q(2), q(1)) ¢

T™ V™, the tangent bundle related to V™. The motion equations (4.1) are divided into two
parts with respect to the partitioning of the generalized coordinates

(q%)=(g",q"); g*',q“2 denote the intrinsic and external coordinates,

respectively:

o (@G + 8.4, (@)§” +T,,.(0)4°¢° =0, + R,, (4.22)
8up (04" + 8,0, (@) G +T,,.(9)4°¢° = Q, +R,. @2

We regard Ra, as reaction forces due to the constraints (3.1); their structure yields a force

control law which drives the system along the constraint manifold V™. Then, with respect
to the special type of constraints (3.1) the augmented PD control law is given by



126

R, =0 (4.32)

R, = 8upylio (1) + 80, 82 Qs = 8y G (1) ~ Ty 4 4° | +eaw)

b -c b - - b, b,
+T,,.49" 40 () + [ped 4% — Qo — K" — Cppe
b
et = qb‘ - qo‘(t ) denotes the error, Kalb, and Calbx denote symmetric and

positive definite gain matrices characterizing the feedback component to reduce tracking
errors. The remainder in (4.3b) describes the feedforward component of the control law to
drive the system along V™. Here, the Voronetz equations

§* = 8%(0,, - 8,y (1)~ Ty 4°4°).

where g btz g a5, =0 CI:Z are implicitly used. The corresponding online control

scheme is shown in fig. 2.

Initial state

(a.4). (@),
.

Man model
n=3Lr=25m=6

ay

=
é
Wl

R, *t04,=La[q] >(q"().4' (1))
]
: Nonlinear feedforward
2
Reference ) L —
motion a@'®, d'(). &'
Rf) Y
: Linear feedback <

Figure 2. Closed loop control law of the diver model
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Substituting Ran and (4.2b) into (4.2a) yields the error equation

[ga,b‘(q)— 8 (D) 87(9) gazbl(q)] bt

. 1. i (4.4a)
T (@ @+ K,y | &+ Cy e =00
Using the matrix notations
galbl galbz u v
8= =l r )
8apy  8ap, v w
- -1 T . b
gi=u-v-w v, y:=(,,9),
K:=(K,,), C:=(C,), e:=(e"),
ab ab
we find that (4.4a) reads
§'e'+(7+K)é+Ce=O. (4.4b)
Defining the function
V(é,e,q):=1é"gée+Le’Cet ce’gé 4.5)

where € denotes a small parameter we can showV >0,V <0 along the trajectory
given by (4.2) under the control law (4.3).
The first statement is clearly correct for sufficient small £ because C is assumed to be

positive definite, and g denotes the inverse of the left upper submatrix of the block matrix

-1

-1 u v

g = T which is positive definite.
| w

The second statement can be proved as follows: taking into account the skew-symmetry

of 1 — 2y ,ie. " (i1—2y)é=0, wefindfrom(.5)
1%

iTge+LeTgeréTCere|eTges T (g2 + 7é)|-

n

~éT[(y+ K)é+ Cel+ JéTger éTCere [eTge+ o (Fe+ 78)|=

= -T[K+ 30wV ) - gle-eeTCer e e (-1 - K)e.
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That means that V < O for sufficiently large K such that K + -%(v wh vﬂ)

remains positive definite, and sufficiently small € . Hence, V is a Lyapunov-function. In
that case R 4. 1s a Lyapunov-stable position control law.

1
The results of this procedure are shown in fig. 3. Indeed, the man model is moving along

the manifold defined by the reference trajectory qg' (t ) thereby fulfiling the intrinsic

constraints (conservation law of the angular momentum).

Figure 3. Free flight of a diver from a spring board, showing the conservation
of the total angular momentum




129

5. Summary

The twisting somersault motion of a diver in free flight is simulated using a standard man
model based on an anthropomorphic multibody system. The paper presents a Lyapunov-
stable dynamic control law of a tree-like n dof multibody system moving along an m-
dimensional submanifold (O < m < n) given by a reference motion. The approach uses

differential-geometric concepts and methods well-known from Lagrangian Multibody
Dynamics.
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As is known, the investigation of nonlinear equations describing the problem
on oscillations of bounded objects is an important problem:

dinlk(t, Agradu] — q(t. u = p(t, ). 1)

In the case of variable coefficients k, ¢, p, depending on space coordinates
7 and time t such a system describes oscillation processes in an inhomogeneous
medium. To that kind we can reduce problems on membrane oscillations, problems
on electro-magnetic processes in non-conducting medium, problems on generation
of electro-magnetic oscillations in closed hollow resonators and others.

In this paper we cover basic moments of application of asymptotic methods
of nonlinear mechanics to the investigation of propagation of nonlinear wave in
systems with weak nonhomogeneity of geometric and temporaly types under the
action of small perturbing forces. Consider the following nonlinear equation with
slowly varying coefficients for one-dimensional case:

o 0%

W - az(é‘m,et) ox2 + ﬂz(EiL"Et, )U = 5f (6$,€ta vt, u, QE au) ) (2)

ot’ oz

. - Ou Ou), . .
where ¢ is a positive small parameter, f | ez, et, vt, u, % 52 is a function peri-
T

odic in vt with a period 27 satisfying all the conditions necessary for the construc-

tion of asymptotic approximation.

Ou Ou 0%u
Further, we denote ez = s, et = 7, — = wy, — = — =
) ) 3 ot t oz Uz, 6t2 Utt,
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%
=5 = Uszz. Then for € = 0 and k, 7 as constant parameters the equation (2)

z
is a well-known Klein — Gordon classical equation

Ut — a’zumz + ﬁzu =0, (3)

where a = a(k,7), 8 = B(k, ) are constant.

Equation (3) will be considered further as an unperturbed equation corres-
ponding to the perturbed equation (2).

A solution of equation (3) has the following form

u(a, ) = acosy, (4)

where ¢ = kx — wt + ¢, and a, ¢ are constant, ¥, = k, ¥y = —w,

w? = a®k? + B2 (5)

is a dispersion relation.
For € # 0 we seek asymptotic approximate solution of equation (2) by using
the general scheme of the asymptotic method in the form of the series

U(J{, T,Q, 0: ’(/)) = 040031[1 + 8“1(”3 T,0Q, 0> w) + €2u2(%a T,Q, 0’ w) + 53 sy (6)

dé
where — = v, the functions u;(s, 7, a,0,%) to be found are periodic in 6 and 3
with a period 27, ¥ = kx — vt + ¥, € # 0, a and ¥ as functions of time ¢ and the
space coordinate x should be determined from the following system of equations:

% =eAi(r,a,9) + 2 Ax(1,0,9) + . ..,

—g% = EBI(J{, a, 19) +5232(%’a’19) +.. °

89 ™
i —w+v+eCi(r,a,9) +2Ca(T,a,9) + ...,
09
oz
where A;(,a,9), Bi(x,a,9), Ci(1,a,9), Di(x, a, ¥) (i =1,2,...) as the functions
of a and ¥ periodic in ¢ with a period 2w, which should be further determined.
Evidently, for € = 0 we can obtain a = const, ¥ = —wt+ vt + ¢ (¢ = const) from

=eDy(x,a,9) + 2 Dy(5,0,9) + ...,
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the system (7) and the solution (6) which coincides with the solution (4) of the
unperturbed equation (3) (Klein — Gordon equation).

Further, for determining terms of the series (6) as well as the right-hand sides
of the equations (7) we use the well-known scheme of construction of asymptotic
solutions. We differentiate with respect to ¢t and z the right-hand side of the
series (6), taking into account equations (7) and substituting results into the left-
hand side of the original equation (2). The right-hand side of the equation (2) is
expanded in powers of the parameter ¢ (after substituting u, u¢, u, and expanding
in Tailor series). Then equating the coefficients of the same powers of € on the
left-hand and the right-hand sides we find the following equation for determining
ui(s, 7, a, 6, ¥):

u19,91/2 — 2uygyvw + uwwwz — a?(x, T)k2u1¢¢ + B2(5, T)uy =

= fo(s,7,0,0,v) — [W(—w +v) + 2awCi + 2aka” (s, T)Dl] X (8)
801 2 i .
Xcosy — W(—w +v)a+ 2wA; + 2ka®(x,7)By | siny,
where
fo(se,7,0,60,v) = f(5,7,acosy, awsiny, —aksinip). 9)

For determining the right-hand sides of the system (7) in the first approximation we
obtain from the finiteness condition of functions u; (s, 7, a,6,v) the following sys-
tem of equations for determining A;(,a,¥), Bi(, a,9), Ci(7,a,9), D1(5,a,d):

0A
(—w+ U)8_191 + 2a[wC; + a®(5, T)kD;) = féi)(%, T,a,19),

5C, \ (10)
(~w +v) 5 +2wA1 + o (5, 7)kBy] = B (e, 7,a,9),
where
] 27 27
1((1,)(%, T,0,9) = z_ﬂzeiw//fo(”’ T, a,0,¢)e”i””blcoswd0d1/),
g 0
. ) » 2r2m _ (11)
w0 06 71,0,09) = 572 Ze“’ //fo(%, 7,a,0,1%)e"" "1 sinpddp,
i 00
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Now we consider partial cases of equation (2). Assume that the right -hand
sides of equation (2) do not depend on . In this way we simplify the determination
of the right-hand sides of system (7). Some of them do not depend on 9. As
a concrete example let us consider Klein-Gordon equation for a inhomogeneous
medium

o2 Oz

If z and t are normalized for a certain length of a wave and a period we assume
that

a%_g{ %(z, t)gu}+ﬂ2( t)yu = 0. (12)

a = a(ez, et), B = B(ex, et). (13)

Then, instead of equation (12) we consider an equation with slowly varying coef-
ficients

32
ot
0&

where G = —.

Ox _
For € = 0, » = const, T = const, and hence &(3, 7) = const, B(,7) = const

iy T) L 4 B (o6,7)u = 26656, 7) T)%, (14)

the equation turns into the well-known classical wave linear equation with constant
coefficients, namely Klein — Gordon equation

O _ a0
ot? 972
which admits a solution of the form

+ fPu= (15)

u = acos(kz — wt + @), (16)

where<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>